CEN CWA 13449-1

WORKSHOP

AGREEMENT December 1998

ICS 35.200;35.240.15;35.240.40

English version

Extensions for Financial Services (XFS) interface specification -
Part 1: Application Programming Interface (API) - Service
Provider Interface (SPI) - Programmer’s Interface

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the constitution of
which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN Central Secretariat can be held accountable for the technical
content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN Members are the National Standards Bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece,
Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

. — |

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITE EUROPEEN DE NORMALISATION
EUROPAISCHES KOMITEE FUR NORMUNG

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

© 1998 CEN All rights of exploitation in any form and by any means reserved Ref. No. CWA 13449-1:1998 E
worldwide for CEN national Members.

Page 2
CWA 13449-1:1998

Contents
0T 1=, (o PSPPSR 5
0. 1o o [FTd i oo F PSP PTPRTP 6
1. 2= T (o | (o] 0] o o [P PP PP PPPPPTP 7
1.1 BSVEC HISTORY ittt e s a e e e e e s s s bbb e et e e e s s s b b e ae s 7
1.2 BSVEC STRATEGIESutttiiiteiiiittreettee et e sttt et e e s s et et e e e e et st ettt e e e s s s s b e s et et e e e nassn b e et e e e e e e sanrnreees 7
2. Extensions for Financial SErvices OVEIVIEWcccviiiiriiie i 9
2.1 ARCHITECTURE .tetttietiaittttsttete e s sttt ta e e e s s st e et e e e s e e s s b e e ettt e e a4 e e b e e e e et e e e e e s s be et et e e e e s snnnrnneeeeeesnannn 9
2.2 AP AND SPI SUMMARY L..ottiiiiiiiiiiiiiiiii ettt r e a e e s e e s e e e 11
2.3 DEVICE CLASSES ..iitiiiiiittieittee e ettt e e e e s ettt ettt e e a4 e ekt e e e e o1 e e bbb e et e e e e e s e s b e e et e e e e s n b n e reeee s 12
3. Architectural and Implementation ISSUESui e 13
3.1 THE XFS MANAGERuiitttteiteee ettt e e e sttt e e e s e sttt e e e s e e e et et e e e s e san b e e e e e e e e e nannnrneeeeeee s 13
3.2 SERVICE PROVIDERSctttiiiiiiiiiiiitiiiiiie sttt s st e e e e e s e s s e e e s e s e s s sbr b e e e e e e e s 14
3.21 Service Provider FUNCHONAIILYc..eeiiiiiiiiiiiiieee e 14
3.2.2 Service Provider “Packaging”...........uuuueuuueiuieiiieieiiieieieieieiesniseerreseeree—.. 14
3.3 ASYNCHRONOUS, SYNCHRONOUS AND IMMEDIATE FUNCTIONS.ciiiriiraieenieenieesieeseeeseeeseeesneens 14
3.3.1 Asynchronous FUNCLIONS ..., 15
3.3.2 SYNCAIONOUS FUNCLIONScoiiiiiiiiiiiii et 15
3.3.3 IMMediate FUNCHIONS.........viiieiiiiiee e nnreee e 16
3.4 PROCESSING API FUNCTIONSciuttteiiteeeesiirereette e s s st e e e e e s s st e e e e e s s s e e e e e s s seainnrenereeee s 16
3.5 OPENING ASESSIONiuititiiiieeeie ittt it te e s st ae et e e e s b e e e e e e s s s s s s et e e e s s s e s b e b e e e r e e e s s s bbb re e e e eee e s 16
3.6 CLOSING A SESSIONuuuttteiiieeeteiirtreettee s s s st reete e et s s s e b et e e e e e s e s s b b e et e te e e s e asnn s e e et e e e e e sasnnrnneeeeeees 17
3.7 CONFIGURATION INFORMATIONuuitiriiiieeessiirsieitie s s s s siisbsse e e e s s s s st ba s e e s e s s s sssb s e n e s e s s s ssnaraneneae s 18
3.8 EXCLUSIVE SERVICE AND DEVICE ACCESSutttiiiiiiiiiiiriiieiie e e sttt e e nnnnneen e e 20
3.8.1 Lock Policy for Independent DEVICES.........uuuuurriuiriririiiiiriiiiinieinrninnnenrnrnnnennnn. 21
3.8.2 COMPOUNT DEVICESceoiiiiiie ettt 22
GRS I8 V1 =(16 1 PP PP 23
3.10 FUNCTION STATUS RETURN ...ittiiiiuittiititeeees ittt te e e s s et et e e e s s st e s e e s s s ans et e e e s e s snnreeeeeeeeas 24
3.11 NOTIFICATION MECHANISMS — REGISTERING FOR EVENTS......ccciiiiiiiiiiiieciiiiccn e 24
3.12 APPLICATION PROCESSES, THREADS AND BLOCKING FUNCTIONSuvviiieiiiiiiriiieiiee e 26
3.13 MEMORY MANAGEMENT ...utttiitieiiiiititiiite e s ibbe et e e s s r e e e s s s e e e e e e s s s bbb e e e r e s e s s s bbb beeeaeee s 27
4, Application Programming Interface (API) FUNCLIONSc..eviiiiiiiiiiiiiee e 29
4.1 WS CANCELASYNCREQUEST .uitttiitiiiitttiteettetttee st e st s s st eestesat ettt e st e stesstseatieraneastresaesenns 31
4.2 WFSCANCELBLOCKINGCALL ..eeiiiiiiitttieite e e ee ittt e ettt e e et e e e s et e e e e e s s nereae s 32
4.3 WESCLEANUP ..ottt e e e e e e e s s e e e e e 33
4.4 WWESCLOSE ...iiitiiiitte ettt ettt e e oo ettt e e o4 e b e et e e e e e s e et e e e e e e et e e e e e n e e e e e s 34
A5 WEFSASYNCCLOSE ...iiiiiiiiittitiie ettt e e s e e e e e e s s s e e e e e s e s s s bbb e e e e e e 35

Page 3
CWA 13449-1:1998

4.6 WEFSCREATEAPPHANDLEociiiiiiiiiiiiiiiiie ettt e e a e e e 36
4.7 WWFSDEREGISTER ...ettieiiiitttteetetestiaitttet et e e s s e sttt e e e s aas st e et e e e e et b b et et e e e s e snn e ne e e e e e e nassnnrneeeeeeeas 37
4.8 WEFSASYNCDEREGISTER.....uttiiiiiiiiiitiriiiiee s ittt e s r e e s sb e r e e s s s a e e e s e s s s sbb e aeae e s 38
4.9 WFSDESTROYAPPHANDLE ...cctttiiiiiitttieiteeeae ittt e e e s sttt e e e s s sb e et e e e s e sss e ne e e e e e e s e nnnreneeeeeeas 40
4,10 WESEXECUTE ...uttiiiiiiiiiiiitie it e sttt et r e e s s bbb e e s e e s s s e e e e e s e e s s bbb e e e e e e e s 41
4,11 W SASYNCEXECUTE ..ciiitttteit et ettt ettt e e e e et e e e e et e e e e e e s e s e ne e e e e e e s e nsnnreneeeee e s 43
4,12 WEFSFREERESULT .oiiiiiiiiitiiiie ettt e e 45
4,13 WESGETINFO ...ttt ettt e e e e e s e et e e e e e s et e e e e e s sbn e e e e e e e s 46
4,14 WEFSASYNCGETINFO ...ttt 48
4,15 WFSISBLOCKING ...ctttietiiitite et ee e ettt e e ettt e e e 4 e st e e e e e e sttt e e e s e snn e re e e e e e e s e nnnn e e eeeeee s 50
4160 WSLOCK ... 51
.17 WEFSASYNCLOCK ..etiiiiiiiiiiietit et e ettt e ettt e e e e et et et e e e s e et e e e s e s e n et e e e e e nansnnrneeeeeeeas 53
418 WESOPEN ... 55
4. 19 WEFSASYNCOPEN ...eitieiiiittteeiteee et ittt e e e s ettt e e e s e e b e et e e e e e s b e e e et e e e s e snn e re e et e e e nansnnrneeeeeeeas 58
4,20 WEFSREGISTER ...tttiiiiiiiiiititetiie ettt e s e e e s e e e e e s s s b e e e e e e e s s s sbb e e e e e s e s s s bbb e e e e e e e s 61
4,21 WEFSASYNCREGISTER......uuutttiiiieiiiiitirieitee s s s sttt e e et s as st e e e e e s s b e et e e e s e aan e ne e et e e e s e snnrereeeeeeas 63
4,22 WEFSSETBLOCKINGHOOKeeiiiiiiiiiiiiiiiiie ettt n e 65
4,23 WESSTARTUP ...ttt ettt e ettt e e e e e s e et e e e e e s et e e e e e s e snr e e e e eee s 66
4.24 WFSUNHOOKBLOCKINGHOOK ...ttt 68
4,25 WWFSUNLOCKcitttittie ettt ettt e ettt e e o4 e b et e e e e a1 e e et e e e e e sann e n et e e e e e s nnrrneeeeeee s 69
4,26 WEFSASYNCUNLOCK ...ciiiiiitiiiieie ittt n e e s s e e s e s e s s rea e e e e 70

Service Provider Interface (SPI) FUNCHONS.........oocuuiiiiiiiiie e 71
5.1 WP CANCELASYNCREQUEST c1utiitiiii ittt iciiee i ee e s e e e et e et e et e e et e st e e st e saa s st s e st e sabeesnanes 72
5.2 WP CLOSE ..utttiiiiii ettt ettt ettt e e e 4ot e e e e e e e et e e e e e e e s 73
5.3 WFPDEREGISTER ...cciiiiittiiiiiee etttk r e e e e n e s e s s s e e e r e s e s s s e e e e e e e s 74
5.4 WFPEXECUTE ...uuuuutiuititititiiiiisitieiaeiie et b e s s s e s s s e s b e s s e e e e be e e e e sesenenenenernne 76
5.5 WFPGETINFO ..ottt s e s e e 78
5.6 WIPLOCK ...ttt ettt ettt e et e e e e e st e e e e e e n e e e e e e a e e e e 80
B.7 WP OPEN ...tttk E e R R e R s e R e R R R e e e R R e e e e nennnnne s 81
5.8 WIFPREGISTER ...ctiiiiiiiittieiite ettt ettt e e o4 e ekt e e e e o1 e s e et e e e e e s e sn e et e e e e e snnn e eeaeee s 84
5.9 WFPSETTRACELEVEL ...ctttiiiiiiiiiiiiii ittt 85
5.10 WFPUNLOAD SERVICE......utttttttetiiittteetteesaastseseetaeessaaisssaseeaeeasasassbseetete s e s aann e et e e e e s s sasnnreneeeeees 87
5.1 WFPUNLOCK ...ttt s s s s s st s e e s e snsnnnrnnen 88

SUPPOIT FUNCLIONS.eiiiiitiiee ettt ettt e st e e e et e e e st be e e e s atbeeeessibneees eanes 89
6.1 WFMALLOCATE BUFFER.....ccitiiiiiiiiiiiiiie ettt a e s e e e 89
6.2 WIFMALLOCATE IMORE. ... cttttiitteiiiittte et e e e s ettt e e e s s ettt e e e s s s e e et e e e s e san e e et e e e e e sasnnreeeeeeee s 89
6.3 WFMFREEBUFFER ..ottt 90
6.4 WFMGETTRACELEVEL ...ottiiiiiiiiiiit ettt ettt e e e e e e e s e e e e e s 90

(ST ATA Y/ S T Y= TN 91

Page 4

CWA 13449-1:1998

6.6 WFMOUTPUTTRACEDATA ...coiiiiii ittt 91
6.7 WFMRELEASEDLL ..ottt ettt e e e e e e e e s e e e e e 91
6.8 WFMSETTIMER .eiiiiiiiiiiiiiiie ettt e e e e e e e s 92
6.9 WFMSETTRACELEVELtttiiiiiiiiiiit ettt ettt et e e e s e e e e e e e s r e e ee s 92
7. Configuration FUNCHIONS........uicc e a e e e e e .94
7.1 WEFMCLOSEKEY .oiiiiiiiiittie ittt ettt e ettt e e e s e e e e e e e e s e b e et e e e e e s nnn e e eaeee s 96
7.2 WEFMCREATEKEY ittt e s e e e e e s 96
7.3 WEFMDELETEKEY .ottt e e e et et et e e e s e e e e e e s s nnn e e e e e e e s 97
7.4 WEFMDELETEVALUE ...ttt et st a e st r e s e s re e e e e e 97
7.5 WEFMENUMKEY ..ottt e e e be e e e e e bessnenesenernnes 98
7.6 WEFMENUMVALUE ..ottt e e e e e e e 99
.7 WEMOPENKEY .. ttiiiiiiiitt ettt ettt e e e e et e e e e e 4 e sttt e e e s e s e e e e e e e e e s e nnnreeeeeeee s 100
7.8 WEMQUERYVALUE ..otttiiiiiieiet ittt e e e e et ea s s s e e s e e e ettt e e s e e e e e e e ta b s e e e e e e eeebaban s e e e eeeeanbbnanneaeeaees 101
7.9 WEMSETVALUE ..ottt ettt e ettt e e e s e sttt e e e s e s e e e e e e e s r e e e eeee s 102
8. Data SIIUCTUIESeeeiiiiiiie et a e aeees 103
8.1 WESRESULT .., 103
8.2 WESVERSION ...t n e rnnnn e s 103
9. MEBSSAGES ... e 105
9.1 COMMAND COMPLETIONS AND EVENTScoiiiiiiiiiiiie ittt 105
9.1.1 Command Completion MESSAJES..........uiiiiiiiieiiiiiie e 105
9.1.2 EVENT MESSAQES. ...citiuiii ittt e e e e b e e e e e e e e e e aaes 105
9.2 TIMER EVENTS 1ottttiiiiii ittt ettt e e e e ettt e e e 4 e s e et e e e e a e s et e e e e e s s nnnreeeeeeee s 105
9.3 DEVICE STATUS CHANGESciiiiiiiitiiiiiiie ettt e s a e r e s s s ra e n e e 105
9.4 UNDELIVERABLE IMESSAGESiiiuttitiieteeeiastiret et e e e s s sttt e e e s s st e et e e e s e s e e e e e e s s e snnnrnneneaee s 106
9.5 APPLICATION DISCONNECT .eiiiiiiiiitritiiiie sttt s s ra e 107
9.6 HARDWARE AND SOFTWARE ERRORS......cciiiitttiiiiiieiiiitirie et e s e e e eee s 107
9.7 VERSION NEGOTIATION FAILURESoutiiiiiiiiiiiiiiiiie ittt snnren e 108
10. L 0] 0T [P 109
Annex A - Planned Enhancements and EXIENSIONS.couvieiiiiireiinriie e 112
A1l EVENT AND SYSTEM MANAGEMENTcutttitiieeiiiiitrnneteiesssasissnereeeeessssssnnnee e e e s s ssnnrneeeeeesesaennneees 112
Annex B - CEN/ISSS Workshop on XFS CONACLScuuuuueuiirieiiiriiinieinieieinininieinr.—.n. 113
ANNEX C - C-HEAET ilES..... it eeeesnanneas 114
Gl XS AP L H L ——— 114
C.2 XFSADMIN.H .., 118
.3 XFSCONF . H ...ttt e e e e s s e st s s e e e s s e s e nnn e e nnnnns 119
(O 1] TN PSPPSR 120

Page 5
CWA 13449-1:1998

Foreword

This CWA is revision 2.0 of the XFS interface specification. Release 2.0 extends the scope of the XFS interface
specification to include both the self service/ATM environment as well as the branch environment. The new
specification now fully supports cameras, deposit units, identification cards, PIN pads, sensors and indicator
units, text terminals, cash dispenser modules and a wide variety of printing mechanisms.

This specification was originally developed by the Banking Solutions Vendor Council (BSVC), and is endorsed
by the CEN/ISSS Workshop on XFS. This Workshop gathers both suppliers (among others the BSVC members)
as well as banks and other financial service companies. A list of companies participating in this Workshop and in
support of this CWA is available from the CEN/ISSS Secretariat.

The specification is continuously reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore
expected that an update of the specification will be published in due time as a CWA, superseding this revision
2.00.

This CWA is supplemented by a set of release notes, which are available from the CEN/ISSS Secretariat (an on-
line version of these release notes is available from http://www.cenossdié/iorkshop/XFS/release-
notes.htm).

Page 6
CWA 13449-1:1998

0. Introduction

This is part 1 of the multi-part CWA 13449, describing Release 2.0 of the XFS interface specification.

The full CWA 13449 "Extensions for Financial Services (XFS) interface specification"consists of the
following parts:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's
Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference
Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference
Part 12: Camera Device Class Interface - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred
to a complementary document, called Release Notes. The Release Notes contain clarifications and
explanations on the CWA specifications, which are not requiring functional changes. The current
version of the Release Notes is available from the CEN/ISSS Secretariat (contass@cenorm.ber
download from http://www.cenorm.be/isss/Workshop/XFS/release-notes.htm).

The information in this document originally contributed by members of the Banking Solutions
Vendor Council and endorsed by the CEN/ISSS Workshop on XFS, represents the Workshop's
current views on the issues discussed as of the date of publication. It is furnished for informational
purposes only and is subject to change without notice. CEN/ISSS makes no warranty, express or
implied, with respect to this document.

The XFS specifications are now further developed in the CEN/ISSS Workshop on XFS. CEN/ISSS
Workshops are open to all interested parties offering to contribute. Parties interested in participating
should contact the CEN/ISSS Secretariat (isss@cenorm.be).

A Software Development Kit (SDK) which supplies the components and tools to allow the
implementation of compliant applications and services is available from Microsoft

To the extent that date processing occurs, all XFS Workshop participants agree that the XFS
specifications are Year 2000 compliant.

Revision History:

1.0 May 24, 1993 Initial release of APl and SPI specification
1.11 February 3, 1995 Separation of specification into separate documents for API/SPI and
service class definitions, with updates
2.00 November 11, 1996 Updated release encompassing self-service environment.
October 6, 1998 WOSA/XFS Release 2.00 as originally developed by the BSVC, has

been formally accepted as a CEN Workshop Agreement by the
CEN/ISSS XFS Workshop and the name WOSA/XFS has been
changed into XFS. In spite of the name change, certain occurrencies @f
WOSA/XFS however still appear in the documentation, for
compatibility reasons

1 Microsoft is a registered trademark, and Windows and Windows NT are trademarks of Microsoft Corporation

Page 7
CWA 13449-1:1998

1. Background

1.1 BSVC History

The Banking Solutions Vendor Council, an organization of leading vendors of information technology to the
financial services industry, was formally announced at the American Bankers Association National Operations
and Automation Conference (NOAC) in Denver on May 18, 1992. Revision 1.0 of this specification was
released at NOAC in New Orleans on May 24, 1993.

In the first half of 1998, the BSVC agreed to transfer technical control of the XFS specifications to CEN. On 23-
24 June, the Kick-Off meeting in Brussels of the CEN/ISSS Workshop on XFS was organized, taking over the
technical progression of the specification work from the BSVC. Together with this responsibility transfer to a
CEN/ISSS Workshop, industry participation was widened with non-BSVC members.

The second meeting of the CEN/ISSS Workshop on XFS endorsed Release 2.0 of the XFS specifications for
issue as a CWA.

1.2 BSVC Strategies

Note: the information in this sub-clause has been kept as useful background material from the original
BSVC publication

The following key strategies were adopted by the Banking Solutions Vendor Council to implement the
objectives defined above:

e Use the Microsoff Windows™ operating systems family as the strategic platform for client-server
computing.

e Adopt the Windows Open Service Architecture (WOSA) family of open interfaces and associated
services for the integration of Windows and Windows-based applications into enterprise computing
solutions.

o Utilize existing WOSA elements wherever possible, defining new elements, or extensions to existing
elements, only when no suitable candidate(s) exist in the evolving WOSA family that meet the needs of
financial services computing. In all cases, existing formal or de facto standards will be utilized to the
maximum degree possible.

¢ Enhance WOSA with the Extensions for Financial Services to meet the special requirements of
financial applications for access to services and devices.

e Maintain the highest possible level of compatibility of both the APl and SPI specifications as the
Extensions for Financial Services evolve to include new and enhanced capabilities.

WOSA comprises a family of stable, open-ended interfaces for enterprise computing environments that hides
system complexities from users and application developers. WOSA allows the integration of Windows and
Windows-based applications seamlessly with all the services and enterprise capabilities that application
developers and users need. It includes such interfaces as:

e Open Database Connectivity (ODBC) for standard access to databases,

e Messaging Application Programming Interface (MAPI) for standard access to messaging services, and

e communications support, including Windows SNA, RPC, and Sockets.
Each of the elements of WOSA includes a set of Application Program Interfaces (APIs) and Service Provider
Interfaces (SPIs), with associated supporting software. The architecture of WOSA is shown below:

Page 8
CWA 13449-1:1998

Windows

Windows SPIs

WOSA: Windows Open Services Architecture

For additional information on WOSA, see WO SA BackgrounddMicrosoft part number 098-34801).

The Extensions for Financial Services extend WOSA by defining a Windows-based client-server architecture for
financial applications. The extensions (as with the other elements of WOSA) include a set of APIs and SPIs
common to multiple financial applications.

The WOSA Extensions for Financial Services are planned to include specifications for access to financial
peripherals (such as passbook/journal/receipt printers, magnetic card readers/writers, PIN pads, etc.), financial
transaction messaging and management, as well as related services for financial networks such as network and
systems management and security. All these capabilities are specified for access from the familiar, consistent
Microsoft Windows user interface and programming environments. Whenever possible, the capabilities will be
incorporated into the family of standard WOSA elements, and will utilize existing formal and de facto standards.

Page 9
CWA 13449-1:1998

2. Extensions for Financial Services Overview

A key element of the Extensions for Financial Services is the definition of a set of APIs, a corresponding set of
SPIs, and supporting services, providing access to financial services for Windows-based applications. The
definition of the functionality of the services, of the architecture, and of the API and SPI sets, is outlined in this
section, and described in detail in Sections 5 through 10.

The specification defines a standard set of interfaces such that, for example, an application that uses the API set
to communicate with a particular service provider can work with a service provider of another conformant
vendor, without any changes.

The requirements to be XFS compliant system are:

v' Win 32 based® system must be Win 32 based
v' XFS manage® system must use the XFS manager as distributed by Microsoft
v system must adhere to the published XFS API definition as agreed by the XFS workshop

Although the Extensions for Financial Services define a general architecture for access to service providers from
Windows-based applications, the initial focus has been on providing access to peripheral devices that are unique
to financial institutions. Since these devices are often complex, difficult to manage and proprietary, the
development of a standardized interface to them from Windows-based applications and Windows operating
systems can offer financial institutions and their solution providers immediate enhancements to productivity and
flexibility.

2.1 Architecture

The architecture of the Extensions for Financial Services (XFS) system is shown below.

- XFSAPIs

FS Manager

Figure 2.1 — Extensions for Financial Services Architecture

The applications communicate with service providers, via the Extensions for Financial Services Manager, using
the APl set. Most of these APIs can be invoked either "synchronously" (the Manager causes the application to
wait until the API's function is completed) or "asynchronously” (the application regains control immediately,
while the function is performed in parallel).

Page 10
CWA 13449-1:1998

The common deliverable in all implementations of this Extensions for Financial Services specification is the
Extensions for Financial Services Manager, which maps the specified API to the corresponding SPI, then routes
this request to the appropriate service provider. The Manager uses the configuration information to route the

API call (made to a "logical service" or a "logical device") to the proper service provider entry point (which is
always local, even though the device or service that is the final target may be remote). Note that even though the
API calls may be either synchronous or asynchronous, the SPI calls are always asynchronous.

The developers of financial services to be used via XFS and the manufacturers of financial peripherals will be
responsible for the development and distribution of service providers for their services and devices. A setup
routine for each device or service will also be necessary to define the appropriate configuration information.
This information will allow an application to request capability and status information about the devices and
services available at any point in time.

The primary functions of the service providers are to:

e Translate generic (e.g., forms-based) service requests to service-specific commands.

¢ Route the requests to either a local service or device, or to one on a remote system, effectively defining
a peer-to-peer interface among service providers.

e Arbitrate access by multiple applications to a single service or device, providing exclusive access when
requested.

¢ Manage the hardware interfaces to services or devices.

¢ Manage the asynchronous nature of the services and devices in an appropriate manner, always
presenting this capability to the XFS Manager and the applications via Windows messages.

The system design supports solution of complex problems, often not addressed by current systems, by providing
for maximum flexibility in all its capabilities:

e Multiple service providers, developed by multiple vendors, can coexist in a single system and in a
network.

e The service class definition is based on the logical functionalities of the service, with no assumption
being made as to the physical configuration. A physical device that includes multiple distinct physical
capabilities (referred to as a "compound device" in this specification) is treated as several logical
services; the service provider resolves any conflicts. Note also that a logical service may include
multiple physical devices (for example, a cash dispenser consisting of a note dispenser and coin
dispenser).

e Similarly, a physical device may be shared between two or more users (e.g., tellers), and the physical
device synchronization is managed at the service provider level.

e The API definition and associated services provide time-out functionality to allow applications to avoid
deadlock of the type that can occur if two applications try to get exclusive access to multiple services at
the same time.

e The architecture is designed to provide a framework for future development of network and system
monitoring, measurement, and management.

Note that Figure 2.1 is a high level view of the architecture and, in particular, it makes no distinction between
service providers and the services they manage. This specification focuses on service providers rather than on
services, because the way a service provider communicates with a service is a vendor-specific internal design
issue that applications and the XFS Manager are unaware of. In fact, there are many different ways that service
providers can make services available to applications. Hence, this specification refers primarily to the service
providers, since these are the modules with which the XFS Manager communicates. There are occasional
references to 'service' where this is appropriate.

Example
Figure 2.2 below shows a XFS system supporting a set of financial peripherals. Note that in this framework the

XFS Manager interfaces directly with a set of service providers that interface directly with the physical devices.
Thus, the service providers are shown as implementing the service provider, service, and device driver functions,
although these are more likely to be two or more separate layers. Many other configurations are possible.

Page 11
CWA 13449-1:1998

WorkStation 1 WorkStation 2 WorkStation 3
Application Application Application
< < <
< < <
WOSA/XES API Configura_tion XES API Configura_tion XES API Configura_tion
Information Information Information
XFS XFS XFS
Manager Manager Manager
XFS SPI XFS SPI XFS SPI
< <& < < <
<& < < <
Passhook Passbook Passbook) Passhook
X X X Magnetic .
Printer Printer Printer Printer
N N N Card Reader .
Service Service Service Service Provider Service
Provider Provider P Provider Provider
Vendor X Vendor Y Vendor Y vendor Y Vendor X

.

T R
Passbook Passbook Magnetic Passbook
Printer Printer Card Reader Printer
Vendor X Vendor Y Vendor Y Vendor X
J

Figure 2.2 — A XFS architecture example for a branch office banking system
It should also be noted that one vendor's service providers are not necessarily compatible with another vendor's,

as shown in Figure 2.2. If one application has to access the same service class as implemented by different
vendors, a service provider is installed for each vendor.

2.2 APl and SPI Summary

Sections 5 through 7 of this documenesent the interfaces that allow a financial application to communicate in

a standard fashion with financial services and devices. The functions are at a sufficiently high level to allow for
seamless redirection to other parts of the underlying operating system. A printer, for example, might rely on a

set of services provided by the operating system, but in order to handle the unique characteristics of a financial
printer and application, the service provider would preprocess the command, then redirect the derived commands
to the operating system's printing services. In other implementations, the printer might be supported entirely by
XFS service mechanisms, and not use the operating system printing services in any way.

The API is structured as sets of:

e Basic functions such asstartUp/CleanUp, Oper/Close Lock/Unlock, andExecute that are
common to all the Extensions for Financial Services (XFS) device/service classes,

e Administration functions, such as device initialization, reset, suspend or resume, used for managing
devices and services, and

e Specific commandsused to request information about a service/device, and to initiate device/service-
specific functions; these are sent to devices and services as parameteGeatitteeandExecute
basic functions. These service-specific commands are specified in a set of separate specifications, one
for each service class.

Page 12
CWA 13449-1:1998

To the maximum extent possible, the syntax of specifromands that are used with multiple device/service
classes is kept consistent across all devices. A primary objective is to standardize function codes and structures
for the widest possible variety of devices.

The SPI is kept as similar as possible to the API. Some commands are processed exclusively by the XFS
Manager, and so are not in the SPI, and there are minor differences in the specific parameters passed at the two
interface levels.

A typical scenario showing the usage of the APIs is shown below. This example illustrates the functions used to
print a form.
e StartUp (connects the application to the XFS Manager, including version negotiation)
e Open (establishes a session between the application and the service provider)
e Register(specifies the messages that the application should receive from the service provider)
e Lock (obtains exclusive access to the service by the application)
o multiple Executefunctions, passing one or more specific commands:
@ Print_Form
@ etc.
e Unlock (releases exclusive access to the service by the application)
e Deregister (specifies that the application should no longer receive messages from the service
provider)
e Close(ends the session between the application and the service provider)
e CleanUp (disconnects the application from the XFS Manager)

Note that within a session (defined ®pen andClosé), an application may at any time change the classes of
messages it wishes to receive from the service provider (Bgigigten, and may eithelcock the service only

for specified periods (typically for each transaction), or for the entire session. Also, note that several of the
commands are optional, depending on how the device is being managed and shdredk{in|ock,
RegisterDeregiste).

2.3 Device Classes

The classes of devices that belong to the second version of the Extensions for Financial Services (XFS) are
described in the separate Service Class Definition Document CWA 13449-2, Extensions for Financial Services
(XFS) interface specifications, Part 2: Service Classes Definition; Programmer's Reference.

Page 13
CWA 13449-1:1998

3. Architectural and Implementation Issues

The remainder of this document provides the technical specifications for the Extensions for Financial Services
(referred to hereafter as “XFS” for brevity).

In this specification, the functions of the XFS Application Programming Interface (API) and Service Provider
Interface (SPI) are always described in terms of providing a standardized, portable interface for applications to
gain access to service providers. This architecture allows service providers to deliver an open-ended set of
capabilities to financial applications based on the Microsoft Windows operating systems, including access to
peripheral devices unique to financial institutions. Since the first priority of the WS-XFS participants for XFS
implementations will be to provide this peripheral device access capability, the examples used relate primarily to
device control and physical input/output.

The key elements of the Extensions for Financial Services are the API definition and the corresponding SPI
definition, used by the XFS Manager to communicate with the service providers, together with the set of
supporting services provided by the XFS Manager. These elements are combined in a XFS implementation,
providing access to financial devices and services for Windows-based applications.

The specification defines a standard set of interfaces in order to provide multi-vendor interoperability: if an
application uses the API to communicate successfully with a service provider, it should work with another
conformant service provider of the same type, developed by another vendor, without any changes. Similarly,
any service provider that conforms to the SPI definition can work with a range of conformant applications.

For clarity, three prefixes are used in haming the function interfaces in XFS:

Function type: Prefix Functions called by Functions provided by

e AP| functions: WFS... o Applications o XFS Manager (and typically
passed through #/FP functions)

e SPI functions:WFP... o XFS Manager e Service providers

e Support/Configuration functiondVFM ... e Service providers e XFS Manager
e Applications

3.1 The XFS Manager

The XFS Manager provides overall management of the /XFS subsystem. The XFS Manager is responsible for
mapping the APIWFS..) functions to SPIWFP...) functions, and calling the appropriate vendor-specific
service providers. Note that the calls akgaysto a local service provider.

The XFS Manager determines which service provider to call using the logical name parameter of the WFSOpen
or WFSAsyncOpen function. The logical name is the key providing access to the configuration information that
defines the Service Class (e.g., printer, cash dispenser, etc.), the Service Type (e.g., receipt printer, journal
printer, etc.) and the Service Provider (DLL file name), as well as additional information. The logical name
must be unigue at least within each workstation. See Sections 3.7 and 7 for discussions of configuration
information access and management.

The XFS Manager also provides the Support FunciéfiaM...) defined in Section 6 and the Configuration
Functions (als®WFM...) defined in Section 7.

Before an application is allowed to utilize any of the services managed by the XFS subsystem, it must first
identify itself to the subsystem. This is accomplished usingWhR8StartUp function. An application is only
required to perform this function once, regardless of the number of XFS services it utilizes, so this function
would typically be called during application initialization. Similarly, the complementary function,
WFSCleanUp is typically called during application shutdown. If an application exits or is shut down without
issuing theVFSCleanUp function, the XFS Manager does the cleanup automatically, including the closing of
any sessions with service providers the application has left open.

Page 14
CWA 13449-1:1998

3.2 Service Providers

Each XFS service, foeachvendor, is accessed via a service-specific module called a service provider. For
example, vendor A's journal printer is accessed via vendor A's journal printer service provider, and vendor B's
receipt printer is accessed via vendor B's receipt printer service provider.

The following sections describe the functionality and packaging of service providers.

3.2.1 Service Provider Functionality

The primary functions of XFS service providers, working in conjunction with their respective services and/or
device drivers, are as follows. Note thaivthese functions are implemented is left to the service provider
developer.

e Route the requests to the device or service, which may be on a remote workstation.
Service providers may communicate with remote services in a variety of ways, such as NetBIOS, named
pipes, RPC (Remote Procedure Calls), Windows Sockets, proprietary network programming interfaces, etc.

e Translate the generic requests to resospeeific commands.
Note that this involves translation not jussgrvice-specific commands, but to the commands native to the
resource being used. For example, the commands would not be translated to "Receipt Printer Service"
commands, but to "Brand X, Model Y Receipt Printer" commands. For example, a driver may implement
device-specific translation tables or processes itself, or utilize standard operating system device interfaces
(such as the Windows GDI), if they exist for the particular peripheral.

o Arbitrate access to the resource by multiple applications.
Note that when a physical device includes multiple peripherals (for example, a receipt and journal printer in
a single unit), this may also include arbitration of the sub-devices.

e Manage the interface to the resource.
When physical devices are being controlled, this includes managing the hardware interface to the device.
For example, the service providers may use standard operating system device drivers, vendor-written
proprietary device drivers, etc.

e Manage the asynchronous nature of the services in a consistent manner with respect to the applications.
The asynchronous nature of the SPI must always be presented back to the XFS Manager and the
applications in the form of Windows messages.

e Error recovery.
In some kinds of software failures, such as an application crash, the service provider loses connection with

the application. In this situation, the service provider is responsible for an “orderly” shutdown of the

session with that application. In particular, the service provider generates a system event (see Section 3.11)
indicating that the connection was lost, and if any requests from the application were outstanding, it
generates a system event for each completion that would normally have generated a completion message to
the application.

3.2.2 Service Provider “Packaging”

XFS service providers can be “packaged” into DLLs in a variety of ways:

e One service provider per DLL; for example, a vendor might produce a journal printer DLL, a receipt printer
DLL, a cash dispenser DLL, etc.

e Multiple service providers per DLL; for example a vendor might produce a DLL which contains the service
providers for all XFS-compliant printers.

e All service providers for a specific vendor in a single DLL.

3.3 Asynchronous, Synchronous and Immediate Functions

Windows and XFS are built on an event-driven, asynchronous model. However, the XFS design allows an
application using its interfaces to behave in either an asynchronous or synchronous manner. Thus the API

Page 15
CWA 13449-1:1998

supports two versions of each of the appropriate functions (e.g., an application can request to lock a service
using either the asynchronow#-SAsyncLock function or the synchronod§FSLock function).

Each XFS API function operates in one of three synchronization modes: asynchronous, synchronous or
immediate. These are described in the following sections.

Note that the SPI is purely an asynchronous interface, so all SPI functions are either asynchronous or immediate;
there are no synchronous SPI functions.

See Sections 4 and 5 for a summary of the APl and SPI functions and their synchronization modes.

3.3.1 Asynchronous Functions

Asynchronous mode is used for operations which may take an indeterminate amount of time to complete.
Performing an operation in an asynchronous, as opposed to a synchronous, mode allows the application to
operate in Windows' native event-driven, message-based manner. The processing of an asynchronous request
(e.g.,WFSAsyncExecute)is as follows:

The application calls the XFS Manager.
The XFS Manager generates a sequence numbdRetpeestiDassigns it to the request, and calls the
service provider.

e The service provider schedules the request for deferred processing and immediately returns to the XFS
Manager.

o The XFS Manager returns tRequestio the application, with a status indicating that the request has been
initiated and is being processed.
At some point, the service provider processes the deferred request.
On completion, the service provider posts a completion message to the window handle specified by the
application in its original call. (For flexibility, an application using asynchronous functions can specify a
different window for each request.) The message contains a pointer to a WFSRESULT data structure
defining the results of the request, includingRezuestiDthe status code and the other relevant data.

3.3.2 Synchronous Functions

Synchronous mode is also used when an operation can take an indeterminate amount of time to complete, but the
application wishes to handle the function in a sequential manner. The XFS Manager does not return control to
the application until the operation has completed, thus synchronous functions are referred to as blocking. Each
synchronous call made by an application is translated by the XFS Manager into its asynchronous SPI counterpart
before being passed to the service provider.

In Windows NT, the calling application thread is blocked on request completion. A thread may hareonly
blocking XFS call outstanding at any one time. See Section 3.12 for additional discussion of the management of
synchronous functions, including replacement of the default message loop.

The processing of a synchronous request (8/§SExecute)is as follows:

e The application calls the XFS Manager.

e The XFS Manager translates the request into an asynchronous SPI call, geriRegassaXo track the
request, provides its own window handle to receive the completion message, and calls the service provider
DLL.

e The service provider schedules the request for deferred processing and immediately returns to the XFS
Manager.

The XFS Manager simulates synchronous processing as described above and in Section 3.12.
At some point, the service provider processes the deferred request.

e On completion, the service provider posts a completion message to the window handle specified by the XFS
Manager. The message contains a pointer to a WFSRESULT data structure defining the results of the
request, including thRequestiDthe status code and the other relevant data.

e The XFS Manager unpacks the information from the completion message into the appropriate parameters,
and returns them to the application, unblocking the original application request.

Page 16
CWA 13449-1:1998

3.3.3 Immediate Functions

These are API functions that are not either asynchronous or synchronous. Typically, immediate APIs are those

which do not communicate with a service or a physical device (or use the network in any other way) and are thus

guaranteed to complete immediately, whether successfully or not. They are handled in two ways:

e Processed entirely by the XFS Manager, which returns immediately to the application. Examples include
WFSStartUp, andWFSSetBlockingHook

e Passed by the XFS Manager to the service provider as an immediate SPIl. The service provider processes
the request and immediately returns to the XFS Manager, which returns immediately to the application.
Examples includ®VFSCancelAsyncRequesandWFMSetTraceLevel.

3.4 Processing APl Functions

When an application calls a XFS API function one of the following processing scenarios takes place. Note that

this classification is distinct from the APl synchronization modes discussed above. See Section 5 for the

mapping of API functions to SPI functions.

e The function is converted by the XFS Manager directly into the corresponding SPI function
(e.g.,WFSAsyncRegiste}.

e The XFS Manager performs some preprocessing and then converts the function into the corresponding SPI
function (e.g. WFSAsyncExecuteg.

e The XFS Manager performs some preprocessing and then translates the API function to a different SPI
function, which it passes to the service provider. Most of the synchronous API function&/FSgqck)
are of this type, since they are translated to their asynchronous SPI equivalents.

e The XFS Manager performs some preprocessing and then translates the API function to multiple SPI
functions, which it passes to the service provider (&/§SOpen).

e The function is completely processed inside the XFS Manager\¢=&lsBlocking,
WFSSetBlockingHooK).

Service providers (and sometimes applications) call the XFS Manager for the support fuleftiedin
Section 6 and for the configuration functions defined in Section 7.

3.5 Opening a session

Once a connection between an application and the XFS Manager has successfully been negotiated (via
WEFSStartUp), the application establishes a virtual session with a service provider by issMF§@pen (or
WESAsyncOpen)request. Opens are directed towards “logical services” as defined in the XFS configuration.
A service handlehServicg is assigned to the session, and is used in all the calls to the service in the lifetime of
the session.

Note that applications may optionally choose to explicitly manage the concept of “application identity” when
they need to use interdependent compound devices (see Section 3.8.2). This is achieved by using the
WFSCreateAppHandle function to get an application handkeApp, which is unique within the system. This
function can be called multiple times to obtain multiple unique handles. An application handle parameter is then
used in thaVFSOpenfunction, directing the service provider to bind the specified application handle to the
session being initiated. This allows a single application process (potentially multi-threaded) to act as multiple
applications to the XFS subsystem, to allow effective use of interdependent compound devices. An example of a
case in which this could be useful is an application using the Multiple Document Interface (MDI); the

application could associate an application handle with each MDI child window. See Section 3.8.2 for additional
discussion of the use of application handles with compound devices. Note that neither service nor application
handles may be shared among two or more applications.

The actions performed by the XFS Manager on an open are as follows:

e Retrieves the configuration information defining the specified logical service, in order to determine the DLL
name of the service provider. The logical service name is the key to the configuration information.

e Loads the DLL containing the requested service provider, if it is not already loaded.

e Performs pre-processing and translation as necessary, depending on whether the synchronous or
asynchronous open API has been issued.

Page 17
CWA 13449-1:1998

e Generates a unique service hantii8drvice that identifies the session with the service provider that is
being established, to be passed back to the application as a parameter.
e Calls the service provideN¥FPOpen function, passing the parameters needed.

The service provider does the following:

e Performs version negotiation, using the parameters specifying the SPI version requested by the XFS
Manager, and the service-specific interface version requested by the application.

e Retrieves the configuration information.

e Asynchronously establishes a session with the service specified in the configuration on the specified
workstation, if necessary, relying on the transport facilities provided.

o Upon completion of the request, posts a completion message (WFS_OPEN_COMPLETE), which goes to
the application for &/FSAsyncOpencall, and to the XFS Manager fok&SOpen call.

Note that even if the service is locked by another application, the open function succeeds, as defined in Section
3.8, “Exclusive Service and Device Access.”

An application programmer has at least two obvious choices as to when to perfovirSpen (and the

complementary’WFSClosé of the services it utilizes:

e Open the services during application initialization, keep them open, and close them during application
shutdown.

o Perform the open each time the service is required, utilize it, and immediately close it.

Each technique has its own advantages. For example, while the first example might provide better performance,
the second might be easier to program. In any case, upon a successful completion of an open, the XFS
subsystem returns a service handle which must be used for all subsequent communication with the service.

Note that an application must perform an operefarhlogical service that it wishes to utilize, even if the
services are of the same type. For example, if an application wishes to utilize two separate receipt printers, it
must open two separate logical services.

Furthermore, an application may need to open multiple logical services, even when a set of devices are housed in
a single device. For example, consider a compound printer which includes both a receipt and a journal printer.

If the application requires access to both the receipt and journal printer functions, it must open both a receipt
logical service and a journal logical service.

3.6 Closing a Session

When an application no longer requires the use of a particular service, it iS§&&Choseor
WEFSAsyncCloserequest. The XFS subsystem then closes that session as follows:
The XFS Manager calls the service provid&/SPClosefunction.
The service provider schedules the request for deferred processing, and returns immediately to the XFS
Manager. Note that at this point the service ham®eyviceis no longer valid.
e At some point, the service provider processes the deferred close request, communicating with the service as
necessary to accomplish the request.
Requests that were issued by the application before the close are executed.
If the calling application has the service locked under the s&wervice the service provider unlocks it
automatically (following the standard lock policy as defined in Section 3.8).
e The service cleans up its administrative information (rem@ESRegisterentries etc.).

If the XFS subsystem loses connection to an application, it closes the session as described above, and:

e An “application disconnect” event (SYSTEM_EVENT class) is generated.

e Since messages can no longer be posted to the application, any command completion and event notification
messages from this service for the application are converted to “undeliverable message” events
(SYSTEM_EVENT class).

Note that it is required that some application have registered for system events, or these events are effectively not
reported.

Page 18
CWA 13449-1:1998

3.7 Configuration Information

The XFS Manager uses its configuration informatimdefine the relationships among the applications and the
service providers. In particular, this information defines the mapping between the logical service interface
presented at the API (via logical service name) and the appropriate service provider entry points.

The configuration information also includes specific information about logical services and service providers,
some of which is common to all solution providers; it may also include information about physical services, if
any are present on the system, and vendor-specific information. The location of the information is transparent to
both applications and service providers; they always store and retrieve it using the configuration functions
provided by the XFS Manager, as described in Section 7, for portability across Windows platforms.

It is the responsibility of solution providers, and the developers of each service provider, to implement the
appropriate setup and management utilities, to create and manage the configuration information about the XFS
subsystem configuration and its service providers, using the configuration functions.

These functions are used by service providers and applications to write and retrieve the configuration
information for a XFS subsystem, which is stored in a hierarchical structure called the XFS configuration
registry. The structure and the functions are based on the Win32 Registry architecture and API functions, and
are implemented in Win32 using the Registry and the associated functions

Each node in the configuration registry is called a key, each having a name and (optionally)Adakedees

consist of a name and dagtair, both null-terminated character strings. The structure is as follows:

(1) The top level is the root node for the XFS subsystem. Its key name is WOSA/XFS_ROOT (it is a subkey
of HKEY_CLASSES_ROOT in the Win32 Registry).

(2) The second level contains at least three keys: XFS_MANAGER, LOGICAL_SERVICES, and
SERVICE_PROVIDERS. Other keys (e.g., PHYSICAL_ SERVICES) may be defined and used as
required.

(3) Below the XFS_MANAGER key there are values and/or keys for information that the XFS Manager
creates and uses.

(4) Below the LOGICAL_SERVICES key there is a key for each logical service defined for the system on
which the registry resides; the key names are the logical service nampsZttogicalNam@arameter of
the WFSOpen WFSAsyncOpenandWFPOpenfunctions). Since there is only one registry per
workstation, this enforces the requirement that logical service names are unique within at least the

This is text
next line

workstation.
(5) Below the SERVICE_PROVIDERS key there is a key for each service provider defined for the system.

The configuration functions provide the capabilities to create, enumerate, open and delete keys, and to set, query
and delete values within each key. Vendor-provided configuration utility programs set up the registry structure
and its contents, using these functions. The third level contains the values and keys that define how the XFS
subsystem, services and providers are configured. These are used by the XFS Manager, applications and service
providers. Note that vendor-specific information may be added to any key in this structure, using optional

values.

The figure below illustrates the structure of the configuration registry:

Page 19
CWA 13449-1:1998

WOSA/XFS
Root
XFS LOGICAL _ SERVICE_ | (other keys | PHYSICAL_
MANAGER SERVICES PROVIDERS| optiona) | SERVICES
(optional)
XFS Mgr XFS Mgr| | Logical Logical | | Service Service Physical Physical
Info |*** | Info Service 1| *** |Service n[|Provider 1 *** Provider n service 1] *** |service n
The XFS Manager key has the following optional values:
e TraceFile the name of the file containing trace data. If this value is not set in the

configuration, trace data is written to the default file path\name
C:\XFSTRACE.LOG.

e ShareFilename the name of the memory mapped file used by the memory management functions
of the XFS Manager.

o ShareFilesize the size of the memory mapped file used by the memory management functions
of the XFS Manager.

Some additional values could be also defined in the XFS SDK release notes. Please refer to the related document
for more information.
Every logical service key has three mandatory values:

e class the service class of the logical service; (see the Service Class Definition
Document for the standard values)

o type the service type of the logical service; the standard values for service type
are defined in the XFS software development kit SDK

e provider the name of the service provider that provides the logical service
(the key name of the corresponding service provider key)
A service provider key also has three mandatory values:
e dllname the name of the file containing the service provider DLL
e vendor_name the name of the supplier of this service provider

e version the version number of this service provider

Page 20
CWA 13449-1:1998

An example of the content of the configuration information for an actual system is shown below. See Section 7
for the definitions of the configuration functions.

WOSA/XFES Reqistry Root
Second Level Keys
Third Level Keys (or values)
Values

WOSA/XFS_ROOT

XFS_MANAGER
TraceFile=<path-name>\<trace-file-
name>
ShareFilename=<path-name>\
<share-file-name>
ShareFilesize=<file size in bytes>
LOGICAL_SERVICES
Passbook1
class=PTR
type=PASSBOOK
provider=Passbook_Receipt
operator_station=1
input_paper_source=upper
< other optional values >
Receipt1
class=PTR
type=RECEIPT
provider=Passbook_Receipt
< optional values >
Journal1
class=PTR
type=JOURNAL
provider=Journal
< optional values >
ATSafe1
class=CDM
type=ATSAFE
provider=Cash_Dispenser
< optional values >
< other srvcs >
SERVICE_PROVIDERS
Cash_Dispenser
dliname=CASHDISP.DLL
vendor_name=Big Bank , Inc.
version=3.50
< optional values >
Passbook_Receipt
dliname=RPPRNTR.DLL
vendor_name=Code “R Us, Ltd.
version=1.30
< optional values >
Journal
dllname=JOURNAL.DLL
vendor_name=Nobugs Systems
version=2.01
< optional values >
< other prvdrs >

< other keys >

3.8 Exclusive Service and Device Access

This section describes how application access to services and devices is handled by XFS subsystems, using the
lock facility. It discusses the meaning of timers within the context of a lock request and issues that arise when

Page 21
CWA 13449-1:1998

multiple applications have issued lock requests. It also describes how requests that were submitted to the service
provider prior to a lock request are managed. Furthermore, it describes how compound devices (physical
devices that include two or more logical devices, such as a passbook printer that also includes a magnetic stripe
reader) are handled.

Typically, an application requirescclusiveaccess to a particular service when it is about to utilize it,
particularly in combination with other services. For example, an application may need to use a PIN pad,
magnetic stripe reader, receipt printer and journal printer to complete a transaction. The application must be
guaranteed that it has accesaltadhe devices before starting on the transaction, and that no other application
will be able to use them until the transaction is complete and it has explicitly released them. This is
accomplished by using thFSLock (or WFSAsyncLock) function and the complementaty=SUnlock

function.

An application should act in a cooperative manner when locking a service, by keeping it locked for the minimum
time period that it requires exclusive access to the service. Typically, this means locking a set of services,
performing a series of requests to the services to complete a transaction, and immediately unlocking the services.

Applications must use appropriate techniques to avoid deadlock when locking multiple services, typically by
making use of the timeout parameter in the lock functions.

Also, note that there are cases in which exclusive access is not a requirement, so that it is not always required
that an application lock a service before issuing execute operations to it.

The lock policy describes the rules that services use in managing lock requests. In the description of this policy,
XFS requests are categorized into three types:

o Non-deferred: Requests that can be processed completely by a service as soon as they arrive (e.qg.,
WFPOpen, WFPRegisterand mosWFPGetInfo calls.

o Deferred: Requests which may not be able to be processed completely as soon as they arrive, typically
because they require hardware and/or operator interaction{i:BExecuteand soma&VFPGetinfo
calls).

e Lock: WFPLock calls.
The lock policy is described first for independent devices, i.e., logical services that correspond to devices whose
operation is not interdependent with any other (even though they may be housed in the same physical enclosure).

The following section describes the special requirements involved in managing compound interdependent
devices.

3.8.1 Lock Policy for Independent Devices

The following describes how the categories of requests are handled, in each of the lock states of a service. Note
that although the description refers to queues and other implied implementation characteristics, this is only for
convenience; no particular implementation techniques are required.

Service state: UNLOCKED

o Non-deferred requests are processed on arrival.
o Deferred requests are placed in the deferred queue and processed FIFO.

e When aWFPLock request arrives:
e The lock request is placed in the lock queue.
e The service state changes to LOCK_PENDING.

Service state: LOCK PENDING

e Allrequests in the deferred queue that arribetbrethe pending lock request are processed FIFO;
after all are processed, the the lock queue is processed. Note that depending on the nature of the
service/device, lock requests may be granted FIFO or in some other order, e.g., when an operator takes
an action such as pressing a station button.

Page 22
CWA 13449-1:1998

e When a lock request has been granted:
e The service state changes to LOCKED.
e Any other pending lock requests from the same “owner” are also granted. (The owner is the same
if it comes from the same workstation and has the same application and service handles.)

Service state: LOCKED

e Arriving requests (except lock requests) are handled as follows:

o Non-deferred requests are processed on arrival.

o Deferred requests that aret WFPExecuterequests are placed in the deferred queue.

o WFPExecuterequests from the owner of the lock are placed in the deferred queue.

o WFPExecuterequests that are not from the owner of the lock are rejected (with error code
WFS_ERR_LOCKED).

e WFPUnlock andWFPCloserequests from the owner of the lock are placed in the deferred queue.
(Note that a close request to a locked service is treated as an unlock followed by a close.)

¢ WFPUnlock andWFPCloserequests that areot from the owner of the lock are treated as non-
deferred requests, i.e., processed on arrival.

o The deferred queue is processed FIFO.

e When aWFPLock request arrives:
e Ifitis from the owner of the lock, it is granted.
e [fitis not from the owner of the lock, it is placed in the lock queue.

e When aWFPUnlock or WFPCloserequest is processed from the deferred queue, or the connection
between the service and the owner of the lock is lost:
o |f the lock queue is not empty, the service state chande8@K_PENDING .
o |If the lock queue is empty, the service state changgdltddCKED .

Note that most requests include a timeout parameter which must be managed appropriately, i.e., when the
specified time expires, the request is rejected with the error code WFS_ERR_TIMEOUT. The timeout
parameter is particularly important with théSLock request, since it allows applications to set a maximum
time to wait for a lock to be granted, to allow prevention of deadlock situations when requesting locks of
multiple devices.

3.8.2 Compound Devices

Compound devices are very common in the financial services industry. For the purposes of this discussion, there

are three types of compound devices:

e Two or more separate logical devices that share a physical housing (or perhaps some other attribute), but
function completely independently of one another

e Two or more distinct logical devices that are functionally interdependent in some way, such as a journal
printer and passbook printer that use the same print head mechanism

e Two or more logical devices that are simply different logical views of a single physical device, such as a
single printer that is managed as two separate logical devices, a document printer and a passbook printer

The first of these types has no special significance from the XFS point of view. Each of the devices is managed
as a separate logical and physical device, and the system configuration issues (e.g., making sure that devices that
are packaged together are assigned to the same workstation) are left to application utilities outside the scope of
this specification.

The latter two types are treated identically in an XFS system. When any one of a set of interdependent logical
devices that forms a compound device is locked, all the other logical devices in that compound device are also
implicitly locked on behalf of the requesting application. (The specific policy is described below.sdifrtbe
application (see the discussion of “application identity” below and in Section 3.5) explicitly requests a lock of
another of these logical devices, the lock is granted. In order to allow the application to “know” that the devices
are part of a compound device, and therefore interdepende¢RBEock function returns an array of service
handles, defining the set of other devices within the compound device that are now explicitly locked by the
application. This allows the application to manage its use of these devices accordingly. Normally, it must use
them in a strictly sequential manner to avoid any possible conflicts, but if it has some special knowledge of how
the devices are related, it may be able to multiplex requests in some ways.

Page 23
CWA 13449-1:1998

Note that an application can also determine whether a device is compound by using the device capabilities query
function of WFSGetlnfo.

There are many different ways in which programmers can make use of multiple threads and/or processes in
financial applications. Each XFS service can be controlled from its own thread; all services can be controlled

from a single thread, with other threads/processes used for other application functions; several identical threads
can handle all open services as needed; etc. In some of these models, the “user” of a service could be considered
to be the process as a whole; in other models, the “user” is a single thread. The XFS design allows for both
models by providing the programmer the capability to explicitly control the “identity” of an application. The
programmer can make all the threads in a process appear to a service provider as one “application,” identify each
thread as a different “application,” or create some hybrid of these approaches, allowing interdependent

compound devices to be managed correctly no matter what application architecture is used.

In order to allow this flexibility in application architecture, the “identity” of an application can optionally be
managed explicitly using the concept of application handles. An application haAg[@ is created using the
WEFSCreateAppHandle function, and is guaranteed unique within the system. WR8Openfunction takes

an optional application handle parameter which is bound to the service Hz®eltei¢g returned by the open

function. This approach allows applications that use interdependent compound devices to be implemented with
any combination of single or multiple processes and/or threads, by explicitly managing an appropriate set of
application handles. If this facility is not used (indicated by the application using the value
WFS_DEFAULT_HAPP for th&éAppparameter iWFSOper), the XFS subsystem automatically treats each
process as having a single, unique application handle. See Section 3.5 for additional discussion of this topic.

The lock policy for interdependent compound devices uses the same rules as for independent devices, with some
additional constraints. In order to synchronize access via multiple logical services to a single physical device, or
to interdependent devices, the service manages a single lock queue and a single deferred queue for the set of
related logical services. The additional constraints are:

Service state: LOCK PENDING

e When a lock request has been granted to one of a set of related logical services:
o All the other related services in the set change to a “reserved” state in which they are treated as
being in the LOCKED state for requests not from the owner.
¢ Any lock request from the owner for one of the reserved services is granted on arrival.
e Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

Service state: LOCKED

e Any lock request from the owner for one of the reserved services is granted on arrival.

e Lock requests that are not from the owner of the reserved devices are placed in the lock queue.

o Note that if aWFPUnlock or WFPCloserequest is processed for the service, and any other logical
service that is related to this service is in the LOCKED state, then the service state is set to
“reserved,’not UNLOCKED.

o Note also, that if & FPUnlock or WFPCloserequest is processed for the service, and the other
logical services that are related to this service are in the “reserved” state, then all these services
change to the UNLOCKED state.

3.9 Timeout

There are two fundamentally different time domains in a system, each having a different implication on the

concept of timeout:

e ‘“user time” = real time; timeout here says simply “this job is taking too long” as defined by the application
and/or the user (indicated by a WFS_ERR_TIMEOUT error code)

e “service time” = the time taken by the service requéttin the service; typically, the physical device
operation (indicated by WFS_ERR_DEV_NOT_READY or WFS_ERR_HARDWARE_ERROR error
code)

In XFS systems, the service manages the latidrput needing any input from the application, since it “knows”
the charactistics of the device, and can generate a timeout event if the device takes too long, even if the

Page 24
CWA 13449-1:1998

application timeout value (if any) has not been exceeded. Therefore, the timeout value provided in the API is
treated by the service provider as user/real time. If the time is exceeded, the service provider cancels the request
and returns a timeout event to the application. An application can also specify that a request should wait until
completion, no matter how long the request takes, by specifying the special value WFS_INDEFINITE_WAIT.

3.10 Function Status Return

When a XFS API or SPI function call completes, it returns a value that either defines the completion status, or in
the case of asynchronous functions, the status of the initial processing of the request. When an asynchronous
function completes, the completion message includes the final status of the request. The return value of most
functions is a “result handletiResult of type HRESULT.hResultvalues are defined to be WFS_SUCCESS

(zero) for success; other values indicate the specific error that occurred, as defined in each function specification.
The XFS Manager and the service providers return status from a function call, in the forniRefalresult

handle, in two manners:

e By returning arhResultvalue as the function return.

e By posting a completion message to the window specified in the request. The message contains a pointer to
a structure that includes th&esult

The mechanism depends on the category of function being processed, as follows:

e Immediate API
The XFS Manager processes the request, and immediately returns a result handle. In some cases, the XFS
Manager calls the service provider to process the request, then returns the result handle from the service
provider to the application.

e Asynchronous API

Since the processing is performed in a number of steps, as described earlier, return status is generated at a

number of levels:

e The service provider performs any validations which can be processed immediately.

o If an error is detected, the service provider returngBesultto the XFS Manager, which immediately
returns it to the application.

e Otherwise, the request is scheduled antdResultof WFS_SUCCESS is immediately returned to the
XFS Manager, which immediately returns it to the application. This informs the application that the
request has been accepted and is being processed.

e Upon completion of the deferred request, a completion message is posted to the application's window.
This message points to the structure that includesRiesultindicating the completion status of the
request.

e Synchronous API
e Since a synchronous API call is translated by the XFS Manager to an asynchronous SPI, the service

provider behaves the same as in asynchronous API processing. Specifically, the service provider
performs any validations which can be processed immediately.

e If an error is detected, the service provider returngBesultto the XFS Manager, which immediately
returns it to the application.

e Otherwise, the request is scheduled antdResultof WFS_SUCCESS is immediately returned to the
XFS Manager, indicating that the request has been accepted and is being processed.

e Upon completion of the deferred request, a completion message is posted to the XFS Manager window.
The XFS Manager retrieves th®esultfrom the structure pointed to by the message and returns it to
the application.

3.11 Notification Mechanisms — Registering for Events

The WFSRegisterandWFSDeregisterfunctions (and their asynchronous counterparts) are used to register and
deregister the window procedures which are to receive Windows messages when particular unsolicited,
asynchronous events occur, either during request processing or at other times. In other words, they are used to
enable or disable the reception of event notifications. By providing notifications of this type to applications, the
requirement to poll for status is removed, and a simple method for implementing "monitoring" applications is
provided. EacWFSRegistercall specifies a service handleSgrvicg, one or more event classes, and an

Page 25
CWA 13449-1:1998

application window handléhfVngd which is to receive all the messages of the specified class(es). The
corresponding SPI functiond/FPRegisterandWFPDeregister, implement the API functions.

There are four classes of events:
SERVICE_EVENTS
USER_EVENTS
SYSTEM_EVENTS
EXECUTE_EVENTS

For the first three of these event classes, if a class is being monitored and an event occurs in that class, a message
is broadcast to evehWvndregistered for that class, specifying the service identified blgSleevicehandle.
The events are generated when:
¢ the service status changes (SERVICE_EVENTS), e.g., a printer is suspended or is no
longer available.
o the service needs an operation from the user to take place (USER_EVENTS), e.g., a
device needs “abnormal” attention, such as adding paper or toner to a printer.
e asystem event occurs (SYSTEM_EVENTS), e.g., a hardware error occurs, a version
negotiation fails, the network is no longer available or there is no more disk space.

The EXECUTE_EVENTS class is different from the other three. These are events which occur as a normal part
of processing aMVFSExecutecommand. Examples include the need to interact with the user or operator to
request an action such as inserting a passbook into a printer, “swiping” a mag stripe card, etc. A message
generated by one of these events is sahtto the application that issued tWé-SExecutethat caused the

event, even though other applications are registered for EXECUTE_EVENTS. Note that an application must
explicitly register for these events; if it has not, and such an event occurs, the event is not deliverable and the
WFSExecutecompletes normally.

The logic ofWFSRegisteris cumulative: for a given service the number of notification messages sent may be
increased by specifying additional event classes. Since the XFS Manager does not keep track of what events the
application is registered for and the logic of the register/deregister mechanism is cumulative, the service
providers are responsible for implementing the logic of this process.

An application requests registration for more than one event class in a single call by using a logical ‘OR’:
hr = WFSRegister (hService,USER_EVENTS|SERVICE_EVENTS,hWnd);

Note that services always monitor their resources, regardless of whether any application has registered for event
monitoring or not. Issuing/FSRegistersimply causes a service to send notifications to the service provider,
which, in turn, sends notifications to one or more applications.

To communicate to the XFS Manager that it no longer wishes to receive messages in one or more event classes,
an application can cancel any previous registration using/ffeDeregisterfunction. The logic of
WEFSRegisterandWFSDeregisteris symmetric: the application can deregister one or more classes of events
monitored for each window, by properly specifying them in the parameter list. To deregister completely (e.qg.,
every event class for every window), an application uses NULL event class and window handle values in the
parameter list.

Although theWFSDeregistertakes effect immediately, it is possible that messages may be waiting in the
application's message queue. A robust application must therefore be prepared to receive event messages even
after deregistration.

Note that an event notification message always passes the information describing the event to an application by
pointing to aWFSRESULT data structure. After the application has used the data in the struatunst fitee

the memory that the service provider allocated foMESRESULT data structure, using th@FSFreeResult

function.

Page 26
CWA 13449-1:1998

3.12 Application Processes, Threads and Blocking Functions

Within the XFS Manager, a blocking (synchronous) function is handled as follows: The XFS Manager initiates
the operation, and then enters a loop in which it dispatches any Windows messages (thus yielding the processor
to other applications as necessary) and checks for the completion of the operation. When the operation
completes, oWFSCancelBlockingCallis invoked, the blocking operation completes with an appropriate result.

When a Windows message is received for a thread for which a blocking operation is in progress, the thread is not
permitted to issue any XFS calls during the processing of the message, other than the two specific functions
provided to assist the programmer in this situation:

o WHFSIsBlocking determines whether or not a blocking call is in progress.

e WFSCancelBlockingCallcancels a blocking call in progress.
Any other XFS function called when a blocking call is in progress fails with the error
WFS_ERR_OP_IN_PROGRESS. This restriction applies to requests for both blocking and non-blocking
operations.

Although this mechanism is sufficient for simple applications, it canmpymstithose applications which require

more complex message processing while blocked for a synchronous call, such as processing messages relating to
MDI (multiple document interface) events, accelerator key translations, and modeless dialogs. For such
applications, the XFS API includes the functigtirSSetBlockingHook which allows the programmer to define

a special routine which will be called instead of the default message dispatch routine described above. This
function gives an application the ability to execute its own routine at blocking time in place of the default

routine. It isnotintended as a mechanism for performing general application functions while blocked,; it is still

true that thenly XFS functions that may be called from a blocking routine/df&IsBlocking and
WFSCancelBlockingCall The asynchronous versions of the XFS functions must be used to allow an

application to continue processing while an operation is in progress.

Under Windows NT and future multi-threaded, preemptive versions of Windows, the default blocking action is

to suspend the calling application's thread until the request completes. This is because the system is not blocked
by a single application waiting for an operation to complete, and hence not Paléklylessager

GetMessagewhich are required in the non-preemptive systems in order to cause the application to yield

control.

Therefore, if a single-threaded application is targeted at multi-threaded environments, and relies on this
functionality, it should install a specific blocking hook by callivSSetBlockingHook even if the default

hook would suffice. This maximizes the portability of applications that depend on the blocking hook behavior.
Programmers who are constrained to use blocking mode—for example, as part of an existing application which
is being ported—should be aware of the semantics of blocking operations.

In the XFS implementation in a single-threaded environment, the blocking function operates as follows. When
an application requests a blocking XFS API function, the XFS Manager initiates the requested function and then
enters a loop which is equivalent to the following pseudocode:

for(;;) {
* flush messages for good user response */
DefaultBlockingHook 0;

* check for WFSCancelBlockingCall 0O*
if(operation_cancelled())
break;

[* check to see if operation completed */
if(operation_complete())
break; [* normal completion */

}

The DefaultBlockingHook routine is equivalent to:

Page 27
CWA 13449-1:1998

BOOL DefaultBlockingHook(void) {

MSG msg;

BOOL ret;

[* Wait for the next message */

ret= GetMessage(&msg, NULL, 0,0);

if((int) retI=-1){
TranslateMessage(&msg);
DispatchMessage(&msg);

}

[* FALSE if we got a WM_QUIT message */

return(ret);

}

In a multi-threaded environment, the developer of a multi-threaded application must be aware that it is the
responsibility of the application, not the XFS Manager, to synchronize access to a service by multiple threads.
Failure to synchronize calls to a service leads to unpredictable results; for example, if two threads
"simultaneously" issu&VFSExecuterequests to send data to the same sen¥iees is no guarantee as to the

order in which the data is sent. This is true in general; the application is responsible for coordinating access by
multiple threads to any object (e.g., other forms of 1/O, such as file 1/0), using appropriate synchronization
mechanisms. The XFS Manager can not, and will not, address these issues. The possible consequences of
failing to observe these rules are beyond the scope of this specification.

In order to allow maximum flexibility in the design and implementation of applications, especially in multi-
threaded environments, the concept of "application identity" can optionally be managed explicitly by the
application developer using the concept of application handles. See Sections 3.5 and 3.8.2 for additional
discussion of this concept.

3.13 Memory Management

XFS specifies a protocol for dynamic allocation and release of memory. The general strategy is that the service
providers allocate memory as they need it, and the applications specify when it can be released. This is
implemented using a standard structure (WFSRESULT, defined in Section 8.1) that is always used to pass
information to the applications from the services.

Most service provider function calls are asynchronous, and return their results via a completion message, which
contains a pointer to a WFSRESULT structure, containing the function return status (hResult) and optional data.
The service provider allocates the memory for this structure, using the memory management framework
described below. The deallocation of the structure is done as follows:

e Asynchronous API functions
The application receives the structure from the service provider via a completion message, and is
responsible for deallocation.

o SynchronousWFSExecute WESGetInfo andWFESLock API functions
The XFS Manager passes through the WFSRESULT structure to the application as a returned parameter,
and the application is then responsible for deallocation, just as for asynchronous calls.

e All other synchronous API functions
The XFS Manager unpacks the required information from the WFSRESULT structure into returned
parameters to the application, deallocates the structure, and returns to the application.

Four functions are provided by the XFS Manager to implement this protddelAllocateBuffer,
WFMAllocateMore , WFMFreeBuffer, andWFSFreeResult Using these functions, two widely applicable
allocation policies are supported:

« alinear allocation policy

« alinked allocation policy

Linear allocationcan be used for any flat or contiguously allocated data structure. Such structures are returned
in a single block of allocated memory by thé&-MAllocateBuffer function.

Page 28
CWA 13449-1:1998

Linked allocationcan be used as an efficient way of managing complex data structures, permitting the service
provider some flexibility while allowing the application to release the entire structure with a single call. In cases
in which the service provider does not know a priori the size of the result data set, it makes an initial estimate,
and useSWVFMAllocateBuffer . If the service provider later determines that more space is required by the data,
new memory is requested using the funciiéiMAllocateMore, and is automatically linked to the originally
allocated block. The new memory block returned\tiyMAllocateMore is, in general, not contiguous with the

root block, and the user of this function should behave in all circumstances as if it is not.

The service provider is free to choose whatever allocation granularity is most convenient. This is completely
transparent to the application or XFS Manager, which frees the entire WFSRESULT structure with a single
WEFSFreeResultcall (the XFS Manager can also use this call as an indication that it can clean up any other
objects associated with the request). Applications must belsuagsto free a returned WFSRESULT

structure. Note that a WFSRESULT structure may be returned even if the service provider has returned an error;
if no WFSRESULT is returned, the pointer to the structure is NULL. A service provider may use also this

facility for its "private" memory management requirements; it then usé&'féFreeBuffer support function

to free the allocated memory.

NOTE:

Applications and service providemsustuse the facilities provided by the XFS Manager for XFS-
related memory allocation and deallocation, in order to avoid memory management conflicts
among the applications, the XFS Manager and the service providers.

The following example illustrates how a service provider dynamically allocates a WFSRESULT buffer structure
and an additional data buffer. Note tii#EMAIllocateMore automatically links these, allowing the application
to free both structures with a single call.

WFSRESULT * IpResultBuffer;
/I service provider allocates a WFSResult buffer structure

result = WFMAllocateBuffer (sizeof(WFSRESULT), ulMemFlags, &lpResultBuffer);

/I service provider allocates additional memory

hr = WFMAllocateMore (evenMoreMemory, IpResultBuffer, &lpResultBuffer->IpBuffer);

Once the application has retrieved all the information it needs from the WFSRESULT buffer and any associated
structures, it must free the memory, which requires only a single call:

/I application deallocates the structure when it is finished with it

hr = WFSFreeResult (IpResultBuffer); /I frees both the result buffer and
/I any additional buffers

NOTE:

When an application invokes an asynchronous or immediate (i.e., non-blocking) function which
takes a pointer to a memory object as an argument, it is the responsibility of the service provider to
ensure that it no longer needs access to the object before returning control to the application. This
allows the application to release (deallocate) the memory object immediately upon the return from
the call.

Page 29
CWA 13449-1:1998

4. Application Programming Interface (API) Functions

The functions defined by the XFS API are divided into:

e Basic functionsthat are common to all classes of financial services.

e Administration functions used for the special purpose of administering services.

e Service-specific commandbat are peculiar to a single service class or a group of them and that are sent to
services using basic functiond/FSExecute WFSAsyncExecute WFSGetinfo, WFSAsyncGetinfo).

The benefit of grouping functions that are common to all services is evident: programmers can immediately
focus on those operations that are common through all services and thus can easily build a high level model of
interaction with the service providers.

The basic functions are defined in this section, in alphabetical order, except that the asynchronous version of
each command is described immediately following the synchronous version. For eXsfFphsyncExecute
is placed immediately following/FSExecute The table on the next page lists all the basic functions. This set

of basic functions may be expanded in future releases of this specification, if new functions are determined to be

useful for all service providers.

The administration functions have not yet been fully defined.

The service-specific commands are defined in separate specifications—one for each service class.

The table below summarizes the XFS API functions, and the sections in which they are defined.

=)

11
-

a

Section | Function Mode Description

4.1 WEFSCancelAsyncRequest | Immediate Cancel an outstanding asynchronous request

4.2 WFSCancelBlockingCall Immediate Cancel an outstanding blocking operation

4.3 WFSCleanUp Synchronous Terminate a connection between an applicatio
and the XFS Manager

4.4 WFSClose Synchronous Close a session between an application and a
service provider

4.5 WFSAsyncClose Asynchronous | The asynchronous version\WFSClose

4.6 WFSCreateAppHandle Immediate Create a new application handle to be used in
subsequetVFSOpen call

4.7 WFSDeregister Synchronous Disable monitoring of a class of events by an
application

4.8 WEFSAsyncDeregister Asynchronous | The asynchronous version\WFSDeregister

4.9 WFSDestroyAppHandle Immediate Destroy the specified application handle

4.10 WEFSExecute Synchronous Send service-specific commands to a service
provider

4.11 WFSAsyncExecute Asynchronous | The asynchronous version\WFSExecute

4.12 WFSFreeResult Immediate Request the XFS Manager to free a result buff

4.13 WFSGetinfo Synchronous Retrieve service-specific information from a
service provider

4.14 WFSAsyncGetinfo Asynchronous | The asynchronous version WFSGetlinfo

4.15 WFSIsBlocking Immediate Determine if a blocking call is in progress

4.16 WFSLock Synchronous Establish exclusive control by an application of
service

4.17 WEFSAsyncLock Asynchronous | The asynchronous version\WFSLock

Page 30

CWA 13449-1:1998

d

D

4.18 WFSOpen Synchronous Open a session between an application and a
service provider

4.19 WFSAsyncOpen Asynchronous | The asynchronous version\WFSOpen

4.20 WFSRegister Synchronous Enable monitoring of a class of events by an
application

4.21 WFSAsyncRegister Asynchronous | The asynchronous version WFSRegister

4.22 WFSSetBlockingHook Immediate Install an application-specific blocking routine

4.23 WESStartUp Immediate Initiate a connection between an application af
the XFS Manager

4.24 WFSUnhookBlockingHook | Immediate Restore the default blocking routine

4.25 WFSUnlock Synchronous Release exclusive control by an application of
service

4.26 WFSAsyncUnlock Asynchronous | The asynchronous version\WFSUnlock

Page 31
CWA 13449-1:1998

4.1 WFSCancelAsyncRequest

HRESULT WEFSCancelAsyncRequest (hService, RequestID))

Cancels the specified (or every) asynchronous request being performed on the specified service, before its (their)
completion.

Parameters HSERVICE hService
Handle to the service as returnedWii?SOpen or WFSAsyncOpen.

REQUESTID RequestiD
The request identifier for the request to be canceled, as returned by the original function call
(NULL to cancel all).

Mode Immediate

Comments If the RequestiDparameter is set to NULL, the command will caratehsynchronous
requests that are in progress using the spedifsedvice

A previously initiated asynchronous request is canceled prior to completion by issuing the
WFSCancelAsyncRequesfunction, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but
the cancellation process is inherently asynchronous. On completion, the specified request (or
all requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was received by the sdietthe

request had completed. ThMgFSCancelAsyncRequesis not guaranteed to stop all
asynchronous commands: normal completion messages may still be posted after the cancel. A
robust application that uses asynchronous commands should be designed to accept these
messages even after a cancel is issued.

The cancellation applies not only to the XFS Manager level, but also to the service provider
level. The request is passed through the SPI, and the service provider normally then also
cancels any physical I/0 or other device operation in progress, in the appropriate manner for
the device or service.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_REQ_ID
TheRequestiDparameter does not correspond to an outstanding request on the service.

WFS_ERR_NOT_STARTED
The application has not previously performed a succedffgStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; $SCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See also WFSAsyncExecute

Page 32

CWA 13449-1:1998

4.2 WFSCancelBlockingCall

HRESULT

WFSCancelBlockingCall (dwThreadID)

Cancels a blocking operation for the specified thread, if one is in progress.

Parameters

Mode

Comments

Error Codes

See also

DWORD dwThreadlD
Identifies the thread for which the blocking operation is to be canceled; a NULL value
indicates the calling thread.

Immediate

This function is used to cancel a blocking call (synchronous request) that is in progress. Since
a thread may have onbne blocking call in progress at any tim&FSisBlocking and
WEFSCancelBlockingCallare the only XFS functions allowed with respect to a thread when

it has a blocking call in progress.

The application that issued the blocking call receives a WFS_ERR_CANCELED return code
if the operation is successfully canceled.

The cancellation applies not only to the XFS Manager level, but also to the service provider
level. The request is passed through the SPI, and the service provider normally then also
cancels any physical /0O or other device operation in progress, in the appropriate manner for
the device or service.

Note: the cancel request is accepted and is honored as soon as all Windows messages have
been removed from the message queue (i.e. GetMessage returns no more messages). Refer to
WFSSetBlockingHookfor more information.

If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFSSetBlockingHook, WFSIsBlocking, WFSCancelAsyncRequest

Page 33
CWA 13449-1:1998

4.3 WFSCleanUp

HRESULT

WFSCleanUp ()

Disconnects an application from the XFS Manager.

Parameters
Mode

Comments

Error Codes

See also

None

Synchronous

TheWFSCleanUpcall indicates disconnection of a XFS application from the XFS Manager.
This function, for example, frees resources allocated to the specific application.
WFSCleanUpapplies to all threads of a multi-threaded application. WHSClosehas not

been issued for one or more service providers, then the XFS Manager will automatically issue
the close(s). Once tWFSCleanUphas been performed, subsequent attempts to issue any
XFS function other thaWWFSStartUp will fail.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a succed#fi8StartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WiSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFSStartUp

Page 34

CWA 13449-1:1998

4.4 WEFSClose

HRESULT

WFSClose(hService)

Terminates a session (a series of service requests initiated WitH®@pen or WFSAsyncOpenfunction)
between the application and the specified service. The synchronous velaibsAsyncClose

Parameters

Mode

Comments

Error Codes

See also

HSERVICE hService
The service handle returned WFSOpenor WFSAsyncOpen Matches the close request
to the open request, allowing an application to have multiple sessions open simultaneously
with a single service provider.

Synchronous

WFSClosdlirects the service to free all resources associated with the series of requests made
using thehServiceparameter since thFSOpenthat returned it. If there is a blocking call in
progress the close fails. If the service is locked, the close automatically unlocks it. If no
WFSDeregisterhas been issued, it is automatically performed.

If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a succed#figStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WiSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFSAsyncClose, WFSOpen, WFSDeregister

Page 35
CWA 13449-1:1998

45 WFSAsyncClose

HRESULT WESAsyncClose (hService, hWnd, IpRequestiD)

Terminates a session (a series of service requests initiated WitH®@pen or WFSAsyncOpenfunction)
between the application and the specified service. The asynchronous veieslose

Parameters HSERVICE hService
The service handle returned WFSOpen or WFSAsyncOpen. Matches the close request
to the open request, allowing an application to maintain several "open sessions"
simultaneously.

HWND hWhnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments SeeWFSClose

The applicatioomust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeg#figStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WiSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

The following error condition can be returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceledWFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

See also WEFSOpen, WFSDeregister

Page 36

CWA 13449-1:1998

4.6 WFSCreateAppHandle

HRESULT

WESCreateAppHandle (IphApp)

Requests a new, unique application handle value.

Parameters

Mode

Comments

Error Codes

See also

LPHAPP IphApp
A pointer to the application handle to be created (returned parameter).

Immediate

This function is used by an application to request a unique (within a single system) application
handle from the XFS Manager (to be used in subseqMESOpen'WFSAsyncOpencalls).

Note that an application may call this function multiple times in order to create multiple
“application identities” for itself with respect to the XFS subsystem. See Sections 3.5 and
3.8.2 for additional discussion.

If the function return is not WFS_SUCCESS, it is the following error condition.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeg#igStartUp.

WFSDestroyAppHandle, WFSOpen, WFSAsyncOpen

Page 37
CWA 13449-1:1998

4.7 WFSDeregister

HRESULT WFSDeregister (hService, dwEventClass, hWndReg)

Discontinues monitoring of the specified message class(ea) @asses) from the specifiéGervice by the
specifiedhWndRedor all the calling application’sWnds). The synchronous version\WiFSAsyncDeregister

Parameters HSERVICE hService
Service handle returned BYyFSOpenor WFSAsyncOpen If this value is NULL, and
dwEventClasss SYSTEM_EVENTS, the XFS manager deregisters the application for
those system events generated by the Manager itself.

DWORD dwkEventClass
The class(es) of messages from which the application is deregistering. Specified as a bit
mask that can be a logical OR of the values for multiple classes. A NULL value requests
thatall message classes be deregistered from the specified window fo$énisce

HWND hWndReg
The window which has been previously registered to receive notification messages, and is
now to be deregistered. A NULL value requests #éiflahe application's windows be
deregistered from the specified message class(es) fdrShivice

Mode Synchronous

Comments The functions of &VFSDeregisterrequest are performed automatically W&SCloseis
issued without a previol&/FSDeregister.

See section 3.11 for a description of the classes of events that may be monitored.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specifiechWndRegvindow was not registered to receive messages for any event
classes.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggfigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See also WFSRegister, WFSClose

Page 38
CWA 13449-1:1998

4.8 WFSAsyncDeregister

HRESULT WFSAsyncDeregister (hService, dwEventClass, hWndReg, hWnd, IpRequestiD)

Discontinues monitoring of the specified message class(ea) @asses) from the specifié®ervice by the
specifiedhWndRedor all the calling application's hwnd's). The asynchronous versig¥iRgDeregister.

Parameters HSERVICE hService
Service handle returned BYyFSOpenor WFSAsyncOpen If this value is NULL, and
dwEventClasss SYSTEM_EVENTS, the XFS manager deregisters the application for
those system events generated by the Manager itself.

DWORD dwkEventClass
The class(es) of events from which the application is deregistering. Specified as a bit mask
that can be a logical OR of the values for multiple classes. A NULL value requesi$ that
event classes be deregistered from the specified window fdrSbiwvice

HWND hWndReg
The window which has been previously registered to receive notification messages, and is
now to be deregistered. A NULL value requests #éiflahe application's windows be
deregistered from the specified message class(es) fdrShivice

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments SeeWFSDeregister.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_REGISTERED
The specifiechWndRegvindow was not registered to receive messages for any event
classes.

See also

Page 39
CWA 13449-1:1998

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; $SCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFSRegister, WFSClose

Page 40

CWA 13449-1:1998

4.9 WFSDestroyAppHandle

HRESULT

WFSDestroyAppHandle (hApp)

Makes the specified application handle invalid.

Parameters

Mode

Comments

Error Codes

See also

HAPP hApp
The application handle to be made invalid.

Immediate

This function is used by an application to indicate to the XFS Manager that it will no longer
use the specified application handle (from a preWWwW&SCreateAppHandlecall). See
WFSCreateAppHandleand Sections 3.5 and 3.8.2 for additional discussion.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeg#figStartUp.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WFSCreateAppHandle

Page 41
CWA 13449-1:1998

4.10 WFSExecute

HRESULT

WFSExecute (hService, dwCommand, IpCmdData, dwTimeOut, IppResult)

Sends a service-specific command to a service provider. The synchronous vevgi®AsyncExecute

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the service as returnedwizSOpenor WFSAsyncOpen

DWORD dwCommand
Command to be executed by the service provider.

LPVOID [pCmdData
Pointer to a command data structure to be passed to the service provider.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

LPWFSRESULT * IppResult
Pointer to the pointer to the result data structure used to return the results of the execution.
The service provider allocates the memory for this structure.

Synchronous

This function is used to execute service-specific commands. Each class of service includes a
unique set of commands for the given type of device or service; they are defined in the service-
specific command specifications. Each service provider developer is responsible for
recognizing the complete set of commands for a given class, even if the service provider
doesn't support them all. Each command, for each service class, defines a command data
structure and/or a result data structure. See the separate specifications for each service class
for more discussion of these issues, and the definitions of the service-specific commands and
associated data structures.

The applicatioomust call WFSFreeResultto deallocate the WFSRESULT data structure
returned by this function. Note that a WFSRESULT structure may be returned even if the
function completes with an error; see Section 3.13.

If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
ThedwCommandssued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 42

CWA 13449-1:1998

See Also

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_LOCKED
The service is locked under a differ&@ervice

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
ThedwCommandssued, although valid for this service class, is nppetted by this
service provider or device.

WEFSAsyncExecute

Page 43
CWA 13449-1:1998

4.11 WEFSAsyncExecute

HRESULT WFSAsyncExecute (hService, dwCommand, [pCmdData, dwTimeOut, hWnd,
IpRequestiD)

Sends a service-specific command to a service provider. The asynchronous vaii@takcute

Parameters HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen.

DWORD dwCommand
Command to be executed by the service provider.

LPVOID [pCmdData
Pointer to the data structure to be passed to the service provider.

DWORD dwTimeOQOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments SeeWFSExecute

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_EXECUTE_COMPLETE
WFS_EXECUTE_EVENT

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID _COMMAND
ThedwCommandssued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

Page 44

CWA 13449-1:1998

See Also

WFS_ERR_UNSUPP_COMMAND
ThedwCommandssued, although valid for this service class, is nppetted by this
service provider or device.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_LOCKED
The service is locked under a differ&@ervice

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_COMMAND
ThedwCommandssued, although valid for this service class, is nppetted by this
service provider or device.

WEFSCancelAsyncRequest, WFSExecute

Page 45
CWA 13449-1:1998

412 WEFSFreeResult

HRESULT

WFSFreeResult (IpResult)

Notifies the XFS Manager that a memory buffer (or linked list of buffers) that was dynamically allocated by a
service provider is to be freed.

Parameters

Mode

Comments

Error Codes

See Also

LPWFSRESULT IpResult
Pointer to a WFSRESULT data structure.

Immediate

The XFS service providers may allocate memory to send data to an application. This function
is used by the application to deallocate the memory, and the application must call it when it no
longer needs access to the memory. When the application$vedBreeResulf all memory
allocated by the service provider for this result is deallocated. See Section 3.13.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_RESULT
ThelpResultparameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggfigStartUp.

WFSExecuteWFSAsyncExecute WFSGetlinfo, WFSAsyncGetinfo

Page 46
CWA 13449-1:1998

4.13 WESGetInfo

HRESULT WFSGetinfo (hService, dwCategory, IpQueryDetails, dwTimeOut, IppResult)

Retrieves information from the specified service provider. The synchronous ver¥iiSaéfsyncGetinfo.

Parameters HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen.

DWORD dwCategory
Specifies the category of the query (e.g., for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available
categories depend on the service class, the service provider and the service. The
information requested can be either static or dynamic, e.g., basic service capabilities (static)
or current service status (dynamic).

LPVOID IpQueryDetails
Pointer to the data structure to be passed to the service provider, containing further details to
make the query more precise, e.g., a form name. (Many queries have no input parameters,
in which case this pointer is NULL.)

DWORD dwTimeOQOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

LPWFSRESULT * JppResult
Pointer to the pointer to the data structure to be filled with the result of the execution. The
service provider allocates the memory for the structure.

Mode Synchronous

Comments The XFS Manager passes the request to the service provider, and since the information may be
stored remotely, the function cannot be immediate. Note that many recprebts satisfied
by the service provider and will therefore complete immediately.

The definitions of thelwCategoryandlpQueryDetailsparameters are provided in the service-
specific command sections of this specification. Note that these information retrieval

functions are separate from the other service-specific commands, since those commands can be
executed only vi&VFSExecuteor WFSAsyncExecute which require that the service be

either locked by the application issuing the command, or unlockedGdthefo functions,

however, can be used even when a service is locked by another application.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
which is returned by this function. Note that a WFSRESULT structure may be returned even
if the function completes with an error; see Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions. Any
service-specific errors that can be returned are defined in the specifications for each service
class.

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

Page 47
CWA 13449-1:1998

WFS_ERR_INVALID_CATEGORY
ThedwCategonyissued is not supported by this service class.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
ThedwCategoryissued, although valid for this service class, is nppstted by this service
provider.

See Also WEFSAsyncGetinfo

Page 48
CWA 13449-1:1998

4.14 WFSAsyncGetinfo

HRESULT WESAsyncGetinfo (hService, dwCategory, IpQueryDetails, dwTimeOut, hWnd,
IpRequestiD)

Retrieves information from the specified service provider. The asynchronous verdigisGfetinfo.

Parameters HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen.

DWORD dwcCategory
SeeWFSGetInfo.

LPVOID IpQueryDetails
SeeWFSGetinfo.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWhnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestID
The request identifier for this request (returned parameter).

Mode Asynchronous

Comments SeeWFSGetInfo. The only difference in the asynchronous version of the function is that the
results (query details) returned to the application (in the WFSRESULT data structure) are
pointed to by the WFS_GETINFO_COMPLETE message sent to the spédified

The applicatioomust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
ThedwCategonyissued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; $SCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See also

Page 49
CWA 13449-1:1998

WFS_ERR_UNSUPP_CATEGORY
ThedwCategonyissued, although valid for this service class, is nppstted by this service
provider.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFSGetinfo, WFSCancelAsyncRequest

Page 50

CWA 13449-1:1998

4.15 WEFSIsBlocking

BOOL

WEFSIsBlocking ()

Determines whether a thread has a blocking operation in progress.

Parameters

Return Value

Mode

Comments

See also

None
The return value is TRUE if a blocking operation is in progress and FALSE otherwise.
Immediate

Although a call issued on a synchronous (blocking) function appears to an application as
though it blocks, the XFS Manager in fact relinquishes control of the processor to allow other
Windows processes to run. Thus it is possible for an application that issues a blocking call to
be re-entered, depending on the messages it receives. Since the XFS Manager prohibits more
than one outstanding blocking call per thread, an application's message processing routines
need a way to determine whether they have been re-entered while the application is waiting for
an outstanding blocking call to complete. WESIsBlocking function provides this

function, allowing an application to detect whether a blocking operation is already in progress,
before it issues another XFS request.

Note that if another XFS cdl issued in this situation, the XFS Manager returns with a
WFS_ERR_OP_IN_PROGRESS error code. See Section 3.12 for additional discussion.

WFSCancelBlockingCall

Page 51
CWA 13449-1:1998

4.16 WEFSLock

HRESULT WFSLock (hService, dwTimeOut, IppResult)

Establishes exclusive control by the calling application over the specified service. The synchronous version of
WFSAsyncLock

Parameters HSERVICE hService
Service provider handle as returnedidi#SOpen or WFSAsyncOpen.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

LPWFSRESULT * IppResult
Pointer to the pointer to a WFSRESULT data structure (see Comments). The service
provider allocates the memory for this structure.

Mode Synchronous

Comments A service provider can support a "shared" session, in which multiple applications' data are
mixed in the service's I/O stream. More typically, a session is exclusive at any point in time;
all I/O is for a single application. To define an exclusive use of the service provider, a lock
function (synchronous or asynchronous) must be used. See Section 3.8 for more discussion of
the lock concepts and policy.

The time to complete will depend on whether there is another application that has acquired
exclusive access to the service. Note that trying to lock several services at the same time can
lead to a deadlock. The timeout capability is provided in the API to allow applications to
prevent this.

IppResultis a pointer to a pointer to a WFSRESULT data structure containing a null-
terminated array of service handleéSérvicevalues), specifying anyther services that are
already locked by the application (i.e., under the daf) , only if those services are part

of a compound device that includes the service being loeketare interdependent with it.

The returned pointer is NULL if there are no such "associated" services locked. See Section
3.8.2 for more discussion of this subject.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure, if
there is one. Note that a WFSRESULT structure may be returned even if the function
completes with an error; see Section 3.13.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

Page 52
CWA 13449-1:1998

WFS_ERR_TIMEOUT
The timeout interval expired.

See also WFSAsyncLock, WFSUnlock, WFSCancelBlockingCall

Page 53
CWA 13449-1:1998

4.17 WEFSAsyncLock

HRESULT

WFSAsyncLock (hService, dwTimeOut, hWnd, IpRequestID)

Establishes exclusive control by the calling application over the specified service. The asynchronous version of

WFSLock.

Parameters

Mode

Comments

Messages

Error Codes

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Asynchronous

SeeWFSLock and Section 3.8.2. In particular, note that if other services are locked as a

result of this call (i.e., because the service specified is part of a compound device), the handles
of these services are returned in the WFSRESULT data structure pointed to by the completion
message.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure.
Note that a WFSRESULT structure may be returned even if the function completes with an
error; see Section 3.13.

WFS_LOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; $SCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

Page 54
CWA 13449-1:1998

WFS_ERR_TIMEOUT
The timeout interval expired.

See also WFSLock, WFSUnlock, WFSCancelAsyncRequest

Page 55
CWA 13449-1:1998

4.18 WFSOpen

HRESULT WFSOpen (IpszLogicalName, hApp, IpszApplID, dwTraceLevel, dwTimeOut,
dwSrvcVersionsRequired, IpSrvcVersion, IpSPIVersion, IphService)

Initiates a session (a series of service requests terminated with-B€losefunction) between the application
and the specified service. The synchronous versidRSAsyncOpen.

Parameters LPSTR IpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. lItis
a high level name such as "SYSJOURNALL," "PASSBOOKPTR3" or "CASHDISP02," that
is used by the XFS Manager and the service provider solely as a key to obtain the specific
configuration information they need.

HAPP hApp
The application handle to be associated with the session being opened. If this parameter is
equal to WFS_DEFAULT_HAPP, the session is associated with the calling process as a
whole (i.e., the calling process, not some subset of its threads, is the owner of the session
and itshServicg. SeeWFSCreateAppHandleand Sections 3.5 and 3.8.2 for details.

LPSTR IpszAppID
Points to a null-terminated string containing the application ID; the pointer may be NULL if
the ID is not used. This ID may be used by services in a variety of ways; e.g., it is included
in the SYSTEM_EVENT message for undeliverable events, to aid in finding system
problems

DWORD dwTraceLevel
SeeWFMSetTraceLevel NULL turns off all tracing.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

DWORD dwSrvcVersionsRequired
Specifies the range of versions of the service-specific interface that the application can
support. (See Comments.) The low-order word indicates the highest version of the interface
the application can support; the high-order word indicates the lowest version of the interface
the application can support. In each word, the low-order byte specifies the major version
number and the high-order byte specifies the minor version number (i.e., the numbers before
and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

LPWFSVERSION IpSrvcVersion
Pointer to the data structure that is to receive version support information and other details
about the service-specific interface implementation (returned parameter).

LPWFSVERSION IpSPIVersion
Pointer to the data structure that is to receive version support information and (optionally)
other details about the SPI implementation of the service provider being opened (returned
parameter). This pointer may be NULL if the application is not interested in receiving this
information. Se&VFPOpen.

LPHSERVICE IphService
Pointer to the service handle that the XFS Manager assigns to the service on a successful
open; the application uses this handle for communication with the service provider for the
remainder of the session (returned parameter). If a process opens the same service twice,
the XFS Manager generates and returns diffdr€etvicevalues.

Mode Synchronous

Page 56

CWA 13449-1:1998

Comments

Error Codes

This function is used by an application to initiate a session with a service; the session is
terminated byVFSClose. After WFSStartUp, an application must use this function (or the
asynchronous version) to access a service. The request is made in terms of a logical service
name [pLogicalNamg which is mapped by the XFS Manager to a service provider. The XFS
Manager loads the service provider, if necessary, and returns a logical service handle to the
application which is used during the session to refer to the service.

In order to support future XFS implementations with maximum flexibility, two version
negotiations take place WFSOpen processing. An application specifies in the
dwSrvcVersionsRequirgghrameter the range of versions of the service-specific interface (as
defined in the separate XFS specifications for specific classes of devices, such as banking
printers and cash dispensers) that it can support. If the range of versions specified by the
application overlaps the range of versions that the service provider’'s implementation can
support, the call succeeds. Otherwise the call fails. (The other negotiation that takes place
during the open process is between the XFS Manager and the service provider regarding the
SPI level. Se®VFPOpen for details.)

Information describing the actual service provider implementation is returned in the
WFSVERSION data structure (defined in Section 8.2). In particular, it returns the version the
service provider expects the application to use (the highest common version), as well as the
lowest and highest versions it is capable of. If the call fails, WFSVERSION is still returned,
to help with analysis of the failure.

The version numbers refer to the complete interface specification: the service-specific
WFSExecuteandWFSGetinfo commands, parameters, data structures, error codes, and
messages. If there are any changes to these, the version number should be changed.

This version negotiation allows a XFS application and a service provider to operate
successfully if there is any overlap in their versions. The following chart gives examples of
howWFSOpenworks in conjunction with different application and service provider versions:

Application Service Provider | Return status frodVFSOpen Result
version(s) version(s)

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WES_ERR_SRVC_VERS_TOO_LOW] fails
1.11 - 3.00 1.00 WFS_ERR_SRVC VERS _TOO HIGH fails

Note that a version negotiation error also generates a system event (see Section 9.7).

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

See also

Page 57
CWA 13449-1:1998

WFS_ERR_INVALID_TRACELEVEL
ThedwTracelLeveparameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the a XFS Manager is lower than
any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
(in thedwSrvcVersionsRequirgghrameter of this call) is higher than any supported by the
service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
(in thedwSrvcVersionsRequirgghrameter of this call) is lower than any supported by the
service provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

WFSAsyncOpen, WFSClose, WFSCreateAppHandle

Page 58

CWA 13449-1:1998

4.19 WFSAsyncOpen

HRESULT

WFSAsyncOpen (IpszLogicalName, hApp, IpszApplID, dwTraceLevel, dwTimeOut,

IphService, hWnd, dwSrvcVersionsRequired, [pSrvcVersion,
IpSPIVersion, IpRequestiD ')

Initiates a session (a series of service requests terminated with-B€loseor WFSAsyncClosefunction)
between the application and the specified service. The asynchronous vefie80pen.

Parameters

Mode

Comments

Messages

Error Codes

LPSTR IpszLogicalName
SeeWFSOpen

HAPP hApp
The application handle to be associated with the session being opened.
SeeWFSOpen WFSCreateAppHandleand Sections 0 and 0 for details.

LPSTR IpszAppID
Points to a null-terminated string containing the application ID. V&#e8Open.

DWORD dwTracelLevel
SeeWFMSetTraceLevel NULL turns off all tracing.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

LPHSERVICE IphService
Pointer to the service handle (returned parameter).

HWND hWnd
The window handle which is to receive the completion message for this request.

DWORD dwSrvcVersionsRequired
SeeWFSOpen.

LPWFSVERSION IpSrvcVersion
SeeWFSOpen (returned parameter).

LPWFSVERSION IpSPIVersion
SeeWFSOpen(returned parameter).

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Asynchronous

SeeWFSOpen

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

WFS_OPEN_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

Page 59
CWA 13449-1:1998

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TRACELEVEL
ThedwTracelLeveparameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeg#figStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WikSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by the service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the a XFS Manager is lower than
any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
(in thedwSrvcVersionsRequirgghrameter of this call) is higher than any supported by the
service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
(in thedwSrvcVersionsRequirgghrameter of this call) is lower than any supported by the
service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceledWFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready timed out.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

Page 60
CWA 13449-1:1998

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

See also WEFSOpen, WFSClose, WFSCreateAppHandle, WFSCancelAsyncRequest,
WFMSetTraceLevel

Page 61
CWA 13449-1:1998

4.20 WFSRegister

HRESULT

WFSRegister (hService, dwEventClass, hWndReg)

Enables event monitoring for the specified service by the specified window; all messages of the specified
class(es) are sent to the window specified imvndRegarameter. The synchronous version of
WFSAsyncRegister

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen If this value
is NULL, anddwEventClasss SYSTEM_EVENTS, the XFS manager registers the
application for those system events generated by the Manager itself.

DWORD dweEventClass
The class(es) of events for which the application is registering. Specified as a set of bit
masks that are logically ORed together into this parameter.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

Synchronous

Issuing aWFSRegisterfor a service enables event monitoring on that serWgeSRegister
calls can be cumulative for the same window. For example, to receive notification for both
system and user events, the application candBbRegisterwith both SYSTEM_EVENTS
and USER_EVENTS, as follows:

hr= WFSRegister (hPassbookl, SYSTEM_EVENTS | USER_EVENTS, hWndReg1l);
or call them in two phases:
hr = WFSRegister (hPassbookl, SYSTEM_EVENTS, hWwndRegl);

To cancel notifications us&/FSDeregister.

Note that the service provider always monitors the service, regardless of whether an
application has registered for event monitoring. IssWipBRegistersimply causes the

service provider to post messages to the application in addition to handling the messages itself.
See the discussion in Section 3.11.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CANCELED
The request was canceledWFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a succed#figStartUp.

Page 62
CWA 13449-1:1998

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See also WFSAsyncRegister, WFSDeregister, WFSAsyncDeregister

Page 63
CWA 13449-1:1998

4.21 WFSAsyncRegister

HRESULT WFSAsyncRegister (hService, dwEventClass, hWndReg, hWnd, IpRequestID)

Enables event monitoring for the specified service by the specified window; all messages of the specified
class(es) are sent to the window specified imvndRegarameter. The asynchronous version of
WFSRegister.

Parameters HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen. If this value
is NULL, anddwEventClasss SYSTEM_EVENTS, the XFS manager registers the
application for those system events generated by the Manager itself.

DWORD dwEventClass
SeeWFSRegister.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Mode Asynchronous

Comments SeeWFSRegister.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
pointed to by the completion message. Note that a WFSRESULT structure may be returned
even if the function completes with an error; see Section 3.13.

Messages WFS_REGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_NOT_STARTED
The application has not previously performed a succed#figStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WiSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

Page 64
CWA 13449-1:1998

The following error conditions can be returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure.

WFS_ERR_CANCELED
The request was canceledWFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

See also WFSRegister, WFSDeregister, WFSAsyncDeregister

Page 65
CWA 13449-1:1998

4.22 WFSSetBlockingHook

HRESULT

WFSSetBlockingHook (IpBlockFunc, IppPrevFunc)

Establishes an application-specific blocking routine.

Parameters

Mode

Comments

Error Codes

See also

XFSBLOCKINGHOOK [pBlockFunc
Pointer to the procedure instance address of the blocking routine to be installed.

LPXFSBLOCKINGHOOK IppPrevFunc
Returned pointer to a pointer to the procedure instance pféhwéuslyinstalled blocking
routine.

Immediate

When this function is successfully issued by an application, it returns a pointer to the
previously installed blocking routine. The application may save this pointer so that it can be
restored if desired. If such “nesting” is not required, the application can discard this value and
simply use th&VFSUnhookBlockingHook function to restore the default routine at any time.

See Section 3.12 for a complete discussion.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFSUnhookBlockingHook, WFSCancelBlockingCall, WFSIsBlocking

Page 66

CWA 13449-1:1998

4.23 WEFSStartUp

HRESULT

WFSStartUp (dwVersionsRequired, IpWFSVersion)

Establishes a connection between an application and the XFS Manager.

Parameters

Mode

Comments

DWORD dwVersionsRequired
Specifies the range of versions of the XFS Manager that the application can support. The
low-order word indicates the highest version of the XFS Manager the application can
support; the high-order word indicates the lowest version of the XFS Manager the
application can support. In each word, the low-order byte specifies the major version
number and the high-order byte specifies the minor version number (i.e., the numbers before
and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

LPWFSVERSION IpWFSVersion
Pointer to the data structure that is to receive version support information and other details
about the current XFS implementation (returned parameter).

Immediate

This function is used by an application to register itself with the XFS Manager and specify the
version(s) of the XFS API specification it can use, and returns information on the specific XFS
implementation. Itnustbe the first XFS API function called by an application. An

application may only issue further XFS functions after a succesgf@StartUp has

completed.

In order to support future XFS implementations with maximum flexibility, a version
negotiation process takes placaNirSStartUp. An application specifies in the
dwVersionsRequiregarameter the range of versions of the XFS API specification which it
can support. If the range of versions specified by the application overlaps the range of
versions that the current implementation of XFS Manager can support, the call succeeds.
Otherwise the call fails.

Information describing the actual XFS implementation is returned by the XFS Manager in the
WEFSVERSION data structure (defined in Section 8.2). In particular, it returns the version it
expects the application to use (the highest common version), as well as the lowest and highest
versions it is capable of. If the call fails, WFSVERSION is still returned, to help with analysis
of the failure.

The version numbers refer to the API specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

This version negotiation allows a XFS application and the XFS Manager to operate
successfully if there is any overlap in their versions. The following chart gives examples of
howWFSStartUp works in conjunction with different application and XFS Manager versions:

Application XFS Manager Return status froVFSStartUp Result
versions versions

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WFS_ERR_AP| VERS TOO LOW | fails
1.11 - 3.00 1.00 WFS_ERR APl VERS TOO HIGH | fails

Note that a version negotiation error also generates a system event (see Section 9.7).

After making its last XFS call, an applicatiorust call WFSCleanUpto allow the XFS
Manager to release any resources allocated for the application.

Error Codes

See also

Page 67
CWA 13449-1:1998

The return value indicates whether the application was registered successfully (i.e., the XFS
Manager can support requests from the application). If the function was successful, the
returned value is WFS_SUCCESS; if not, it is one of the following error conditions:

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervening
WESCleanUp

WFS_ERR_API_VER_TOO_HIGH
The range of versions of XFS API support requested by the application is higher than any
supported by this particular XFS implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of XFS API support requested by the application is lower than any
supported by this particular XFS implementation.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFSCleanUp

Page 68

CWA 13449-1:1998

4.24 WFSUnhookBlockingHook

HRESULT

WFSUnhookBlockingHook ()

Removes any previous blocking hook that had been installed and reinstalls the default blocking mechanism.

Parameters

Mode

Comments

Error Codes

See also

None
Immediate

The function will always install theefault routine, not thg@reviousroutine. If an application
wishes to nest blocking hook routines—i.e., to establish a temporary blocking call and then
revert to the previous mechanism—it must save and restore the value returned by the
WFSSetBlockingHookfunction. See Section 3.12.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggfigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFSSetBlockingHook

Page 69
CWA 13449-1:1998

4.25 WESUnlock

HRESULT

WFSUnlock (hService)

Releases a service that has been locked by a pravb8&ock or WFSAsyncLock function. The
synchronous version d/FSAsyncUnlock

Parameters

Mode

Comments

Error Codes

See also

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen.

Synchronous
See Section 3.8.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CANCELED
The request was canceled\WFSCancelBlockingCall

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a successful
WFSLock or WFSAsyncLock

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggfigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFSAsyncUnlock, WFSLock, WFSAsyncLock

Page 70

CWA 13449-1:1998

4.26 WFSAsyncUnlock

HRESULT

WFSAsyncUnlock (hService, hWnd, IpRequestiD)

Releases a service that has been locked by a pravMb8&ock or WFSAsyncLock function. The
asynchronous version $fFSUnlock.

Parameters

Mode

Comments

Messages

Error Codes

See also

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen.

HWND hWnd
The window handle which is to receive the completion message for this request.

LPREQUESTID IpRequestiD
Pointer to the request identifier for this request (returned parameter).

Aynchronous

SeeWFSUnlock and Section 3.8.

The applicatiormust call WFSFreeResultto deallocate the WFSRESULT data structure
which is pointed to by the completion message. Note that a WFSRESULT structure may be
returned even if the function completes with an error; see Section 3.13.

WFS_UNLOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure:

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WES_ERR_NOT_LOCKED

The application requesting a service be unlocked had not previously performed a successful

WFSLock or WFSAsyncLock

WFSUnlock, WFSLock, WFSAsyncLock

Page 71

CWA 13449-1:1998

5. Service Provider Interface (SPI) Functions

The service provider functions are described in the following sections, in alphabetical order. The table below
shows the SPI functions, the sections in which they are defined, their modes, and the API functions they

implement.
Sectio | XFS SPI Mode XFS API Mode
n
5.1 WFPCancelAsyncRequest | Immediate WFSCancelAsyncRequest | Immediate
5.1 WFPCancelAsyncRequest | Immediate WFSCancelBlockingCall Immediate
(none) - WFSCleanUp Synchronous
5.2 WFPClose Asynchronous | WFSClose Synchronous
5.2 WFPClose Asynchronous | WFSAsyncClose Asynchronous
(none) - WFSCreateAppHandle Immediate
5.3 WFPDeregister Asynchronous | WFSDeregister Synchronous
5.3 WFPDeregister Asynchronous | WFSAsyncDeregister Asynchronous
(none) - WFSDestroyAppHandle Immediate
5.4 WFPExecute Asynchronous | WFSExecute Synchronous
5.4 WFPExecute Asynchronous | WFSAsyncExecute Asynchronous
(none) - WFSFreeResult Immediate
5.5 WFPGetinfo Asynchronous | WFSGetlInfo Synchronous
55 WFPGetInfo Asynchronous | WFSAsyncGetinfo Asynchronous
(none) - WFSIsBlocking Immediate
5.6 WFPLock Asynchronous | WFSLock Synchronous
5.6 WFPLock Asynchronous | WFSAsyncLock Asynchronous
5.7 WFPOpen Asynchronous | WFSOpen Synchronous
5.7 WFPOpen Asynchronous | WFSAsyncOpen Asynchronous
5.8 WFPRegister Asynchronous | WFSRegister Synchronous
5.8 WFPRegister Asynchronous | WFSAsyncRegister Asynchronous
(none) - WFSSetBlockingHook Immediate
5.9 WFPSetTracelLevel Immediate (none) -
(none) - WESStartUp Immediate
(none) - WFSUnhookBlockingHook | Immediate
5.10 WFPUnloadService
5.11 WFPUnlock Asynchronous | WFSUnlock Synchronous.
511 WFPUnlock Asynchronous | WFSAsyncUnlock Asynchronous

Note that in this section device drivers and devices are mentioned frequently, instead of service providers and
services. This is due primarily to the fact that access to financial peripheral devices is the first category of
financial services being addressed by the BSVC. However, note that in the future other financial services will be
part of the Extensions to Financial Services, and will also use these interfaces, with additions as necessary. See
Annex A for more on this subject.

Page 72

CWA 13449-1:1998

5.1 WFPCancelAsyncRequest

HRESULT

WFPCancelAsyncRequest (hService, RequestID))

Cancels the specified (or every) asynchronous request being performed on the specified service provider, before
its (their) completion.

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the service provider.

REQUESTID RequestIiD
The request identifier (NULL to cancel all requests for the spedifszavicé.

Immediate. Although the cancellation process itself is asynchronous, the completion
message(s) are associated with the original request, not the cancel request (even if they
indicate a WFS_ERR_CANCELED status).

If the RequestiDparameter is set to NULL, the command will caratelsynchronous
requests on the specified service that are in progress on behalf of the calling application.

A previously initiated asynchronous request is canceled prior to completion by issuing the
WEFSCancelAsyncRequesfunction, specifying the request identifier returned by the
asynchronous function. This function is immediate with respect to its calling application, but
the cancellation process is inherently asynchronous. On completion, the specified request (or
all the requests) will have finished, with a completion message indicating a status of
WFS_ERR_CANCELED, unless the cancel request was made after the request had completed.

The cancellation applies to the service provider level. The request is passed through the SPI,
and the service provider normally then also cancels any physical I/O or other device operation
in progress, in the appropriate manner for the device or service.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_REQ ID
The RequestiDparameter does not correspond to an outstanding request on the service.

Page 73
CWA 13449-1:1998

5.2 WFPClose

HRESULT WEFPClose (hService, hWnd, ReqID)

Terminates a session (a series of service requests initiated WitH-#®pen SPI function) between the XFS
Manager and the specified service provider.

Parameters HSERVICE hService
Handle to the service provider.

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Mode Asynchronous

Comments WFPClosdlirects the service to free all resources associated with the series of requests made
using thehServiceparameter. If the service is locked by the application, the close
automatically unlocks it. If nBVFPDeregisterhas been issued, it is automatically performed.

SeeWFPOpen and Section 3.6 for further discussion.
Messages WFS_CLOSE_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. The service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

Page 74
CWA 13449-1:1998

5.3 WFPDeregister

HRESULT WFPDeregister (hService, dwEventClass, hWndReg, hWnd, ReqlD)

Discontinues monitoring of the specified message class(es) from the specified service provider, by the specified
hwndRedor allhWnds).

Parameters HSERVICE hService
Handle to the service provider

DWORD dwEventClass
The class(es) of messages from which the application is deregistering. Specified as a set of
bit masks that can be logically ORed together. A NULL value requesilitihagssage
classes be deregistered from the specified window for this service provider.

HWND hWndReg
The window to which notification messages are posted. A NULL value requesit that
application's windows be deregistered from the specified message class(eshfBethice

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Mode Asynchronous

Comments WFPDeregisterdoes not stop asynchronous command completion messages from being
posted; a robust application should be designed to accept these messages even after a
deregister is issued.

A WFPDeregisteros performed automatically iN&FPCloseis issued without a previous
WFPDeregister.

To deregisteall messages fall hWnds, the call supplies NULL values for both the
dwEventClasandhWndparameters.

See thaVFPRegisterfunction for a description of the types of events that may be monitored.
Messages WFS_DEREGISTER_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClassparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_NOT_REGISTERED
The specifiechWndRegvindow was not registered to receive messages for any event
classes.

Page 75
CWA 13449-1:1998

The following error condition is returned via the asynchronous command completion message,
as thehResultfrom the WFSRESULT structure. Any service-specific errors that can be
returned are defined in the specifications for each service class.
WFS_ERR_CANCELED

The request was canceledWFSCancelAsyncRequest

Page 76

CWA 13449-1:1998

54 WFPEXxecute

HRESULT

WFPExecute (hService, dwCommand, IpCmdData, dwTimeOut, hWnd, ReqID)

Sends asynchronous service class specific commands to a service provider.

Parameters

Mode
Comments
Messages

Error Codes

HSERVICE hService
Handle to the service provider.

DWORD dwCommand
Command to be executed.

LPVOID [pCmdData
Pointer to the data structure to be passed.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
reqguest that will wait until completion).

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
SeeWFSExecute
WFS _EXECUTE_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_COMMAND
ThedwCommandssued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_UNSUPP_COMMAND
ThedwCommandssued, although valid for this service class, is nppetted by this
service provider.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

Page 77
CWA 13449-1:1998

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS _ERR_LOCKED
The service is locked under a differ&@ervice

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

Page 78
CWA 13449-1:1998

55 WFPGetInfo

HRESULT WFPGetInfo (hService, dwCategory, IpQueryDetails, dwTimeOut, hWnd, ReqID)

Retrieves various kinds of information from the specified service provider.

Parameters HSERVICE hService
Handle to the service provider.

DWORD dwcCategory
Specifies the category of the query (e.g., for a printer, WFS_INF_PTR_STATUS to request
status or WFS_INF_PTR_CAPABILITIES to request capabilities). The available
categories depend on the service class, the service provider and the service. The
information requested can be either static or dynamic, e.g., basic service capabilities (static)
or current service status (dynamic).

LPVOID [IpQueryDetails
Pointer to the data structure to be passed to the service provider, containing further details to
make the query more precise, e.g., a form name. (Many queries have no input parameters,
in which case this pointer is NULL.)

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Mode Asynchronous

Comments The XFS Manager retrieves the information requested from the service provider itself, and,
since the information can be stored remotely, the function cannot be guaranteed to complete
immediately. Note that, typically, requests for generic and class specific categories
complete immediately. S&¥FSGetinfo for additional discussion.

The specifications for the information structures for each service class can be found in the
specifications for the service-specific commmands.

Messages WFS_GETINFO_COMPLETE

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_CATEGORY
ThedwCategoryissued is not supported by this service class.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 79
CWA 13449-1:1998

WFS_ERR_UNSUPP_CATEGORY
ThedwCategonyissued, although valid for this service class, is nppstted by this service
provider.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

Page 80

CWA 13449-1:1998

56 WFPLock

HRESULT

WFPLock (hService, dwTimeOut, hWnd, ReqID)

Establishes exclusive control by the calling application over the specified service.

Parameters

Mode
Comments
Messages

Error Codes

HSERVICE hService
Handle to the service provider.

DWORD dwTimeOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
SeeWFSLock.
WFS_LOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the
software.

WFS_ERR_TIMEOUT
The timeout interval expired.

Page 81
CWA 13449-1:1998

5.7 WFPOpen

HRESULT WFPOpen (hService, IpszLogicalName, hApp, IpszAppID, dwTraceLevel,
dwTimeOut, hWnd, ReqlD, hProvider, dwSPIVersionsRequired,
IpSPIVersion, dwSrvcVersionsRequired, [pSrvcVersion)

Establishes a connection between the XFS Manager and the service provider that supports the specified service,
and initiates a session (a series of service requests terminated WitRB@&osefunction).

Parameters HSERVICE hService
The service handle to be associated with the session being opened..

LPSTR IpszLogicalName
Points to a null-terminated string containing the pre-defined logical name of a service. lItis
a high level name such as "SYSJOURNALL," "PASSBOOKPTR3" or "ATMO02," that is
used by the XFS Manager and the service provider as a key to obtain the specific
configuration information they need.

HAPP hApp
The application handle to be associated with the session being opened.
SeeWFSCreateAppHandleand Sections 3.5 and 3.8.2 for details.

LPSTR IpszAppID
Pointer to a null terminated string containing the application ID; the pointer may be NULL
if the ID is not used.

DWORD dwTracelLevel
SeeWFPSetTracelLevel

DWORD dwTimeOQOut
Number of milliseconds to wait for completion (WFS_INDEFINITE_WAIT to specify a
request that will wait until completion).

HWND hWnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

HPROVIDER hProvider
Service provider handle supplied by the XFS Manager — used by the service provider to
identify itself when calling th&VFMReleaseDLL function.

DWORD dwSPIVersionsRequired
Specifies the range of XFS SPI versions that the XFS Manager can support. (See
Comments.) The low-order word indicates the highest version the XFS Manager can
support; the high-order word indicates the lowest version the XFS Manager can support. In
each word, the low-order byte specifies the major version number and the high-order byte
specifies the minor version number (i.e., the numbers before and after the decimal).
Note: in order to allow intermediate minor revisions (e.g., between 1.10 and 1.20), the
minor version number should always be expressed as two decimal digits, i.e., 1.10, 1.11,
1.20, etc.

LPWFSVERSION IpSPIVersion
Pointer to the data structure that is to receive SPI version support information and
(optionally) other details about the SPI implementation (returned parameter).

DWORD dwSrvcVersionsRequired
Service-specific interface versions required; d@8PIVersionsRequirezbove, and
WFSOpen

LPWFSVERSION IpSrvcVersion
Pointer to the service-specific interface implementation informationpS&dVersion
above, andWFSOpen (returned parameter).

Mode Asynchronous

Page 82

CWA 13449-1:1998

Comments

Messages

Error Codes

This function establishes the connection between the XFS Manager and the service provider,
including version negotiation and passing of implementation information, and initiates a
session between the application and the service. This call is made by the XFS Manager each
time any application issue3/FSOpen or WFSAsyncOpencall to the specified service
(immediately after loading the service provider DLL, if it is not already loaded).

In order to support future XFS implementations with maximum flexibility, two version
negotiations take place WFPOpen. In the first, the XFS Manager specifies in the
dwSPIVersionsRequirguhrameter the range of versions of the XFS SPI specification which it
can support. If the range of versions specified by the XFS Manager overlaps the range of
versions that the service provider can support, the call succeeds. Otherwise the call fails.

The WFSVERSION data structure (described in Section 8.2) is used by the service provider to
return the version of SPI support it expects the XFS Manager to use (the highest common
version), as well as the lowest and highest versions it is capable of. In addition, this structure
is used optionally by the XFS Manager to specify other information about the service provider
implementation. If the call fails, WFSVERSION is still returned, to help with analysis of the
failure.

The version numbers refer to the SPI specification, specifically functions, parameters, data
structures, error codes, and messages. If there are any changes to these, the version number
should be changed.

This version negotiation allows the XFS Manager and a service provider to operate
successfully if there is any overlap in their versions. The following chart gives examples of
howWFPOpen works in conjunction with different XFS Manager and service provider
versions:

XFS Manager | Service Provider | Return status frodVFPOpen Result
versions versions

1.00 1.00 WFS_SUCCESS use 1.00
1.00 - 2.10 1.00 WFS_SUCCESS use 1.00
1.11 1.00 - 2.00 WFS_SUCCESS use 1.11
2.11 - 3.00 1.00 - 2.20 WFS_SUCCESS use 2.20
1.00 2.20 - 3.00 WFS ERR_SPI VER_TOO LOW | fails
1.11 - 3.00 1.00 WFS_ERR_SPI VER _TOO HIGH | fails

The second negotiation is is in relation to the service-specific interface, between the
application program and the service provider. W&SOpen, Section 4.19, for details.

Note that a version negotiation error also generates a system event (see Section 9.7).
Also, seeWFSStartUp, Section 4.24.

WFS_OPEN_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_TRACELEVEL
ThedwTracelLeveparameter does not correspond to a valid trace level or set of levels.

Page 83
CWA 13449-1:1998

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any
supported by this particular service provider.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any
supported by this particular service provider.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application
is higher than any supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application
is lower than any supported by the service provider for the logical service being opened.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

The following error conditions are returned via the asynchronous command completion
message, as thResulfrom the WFSRESULT structure. The service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

Page 84

CWA 13449-1:1998

5.8 WFPRegister

HRESULT

WFPRegister (hService, dwEventClass, hWndReg, hWnd, ReqID)

Enables event monitoring for the specified service by the spehifisitiRegall events of the specified class(es)
generate messages to th¥ndReg

Parameters

Mode
Comments
Messages

Error Codes

HSERVICE hService
Handle to the service provider.

DWORD dwEventClass
The class(es) of events for which the application is registering. Specified as a set of bit
masks that can be logically ORed together.

HWND hWndReg
The window handle which is to be registered to receive the specified messages.

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
WFPDeregisterlis used to cancel notifications. SA&ESRegister.
WFS_REGISTER_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the
service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as thidResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

Page 85
CWA 13449-1:1998

59 WFPSetTracelLevel

HRESULT

WFPSetTracelLevel (hService, dwTracelLevel)

Sets the specified trace level(s) at run time, in and/or below the service provid®VFB&etTracelLevel.

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the service provider.

DWORD dwTracelLevel
The level(s) of tracing being requested. See below.

Immediate

IssuingWFPSetTraceLevelfor a service enables tracing on that service at various levels.

The predefined trace levels that can be used in this function, with their meanings to the service
provider, are as follows (s&¥FMSetTraceLevel for the APl and support function trace

levels):

WFS_TRACE_SPI 0x00000004

Trace all the SPI calls to the service provider, and notification and event messages generated
by the service provider, that are associated with the spebiietvice

WFS_TRACE_ALL_SPI 0x00000008

Traceall SPI, notification and event activity of the service provider lftBerviceparameter
is not relevant to this trace level).

Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual service providers.
Example of other functions that may be traced include network messages, interactions between
the service provider and service, and device interface interaction.

Trace level values can be ORed together in a sthgleraceLeveparameter to request more
than one kind of tracing be started. A NULL value stops all tracing in the service provider.

If more than one process may be using the trace facility, this function should always be
preceded with th&VFMGetTraceLevel function. This value returned by this function is

ORed together with the new trace level(s), and the resulting value is used with
WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s)
had been,

This function has the highest priority to the service provider; it activates the trace as soon as
possible.

WFPOpen also includes an option to set these trace levels, to allow the open process itself to
be traced.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
ThedwTraceLeveparameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED
The application has not previously performed a succedffgStartUp.

Page 86
CWA 13449-1:1998

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See Also WFMGetTracelLevel, WFSOpen, WFSAsyncOpen

Page 87
CWA 13449-1:1998

5.10 WFPUnloadService

HRESULT WFPUnloadService ()

Asks the called service provider whether it is OK for the XFS Manager to unload the service provider’s DLL.
Parameters None
Mode Immediate

Comments This function is issued after the XFS Manager has receiVéBMReleaseDLL request from
the service provider or during the processing oMHeSCleanUpcommand. The service
provider returns WFS_SUCCESS only if it has fully “cleaned up,” i.e., has freed any resources
it has allocated, has no separate threads running, etc. If this is not true, it returns the error
below, and initiates or continues the clean up process.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the service provider DLL at this time. It will repeat this
request to the service provider until the return is WFS_SUCCESS, or until a new session is
started by an application with this service provider.

Page 88

CWA 13449-1:1998

5.11 WFPUnlock

HRESULT

WFPUnlock (hService, hWnd, ReqlID)

Releases a service that has been locked by a praMbB&ock function.

Parameters

Mode
Comments
Messages

Error Codes

HSERVICE hService
Handle to the service provider

HWND hWhnd
The window handle which is to receive the completion message for this request.

REQUESTID ReqlD
Request identification number.

Asynchronous
SeeWFPLock, WFSLock, WFSUnlock and Section 3.9.
WFS_UNLOCK_COMPLETE

If the function return is not WFS_SUCCESS, it is one of the following error conditions,
indicating that the asynchronous operation was not initiated. Any service-specific errors that
can be returned are defined in the specifications for each service class.

WFS _ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

The following error conditions are returned via the asynchronous command completion
message, as thdResultfrom the WFSRESULT structure. Any service-specific errors that can
be returned are defined in the specifications for each service class.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequest

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_NOT_LOCKED
The service to be unlocked is not locked under the cdiBegvice

Page 89
CWA 13449-1:1998

6. Support Functions

Support functions are services of the XFS Manager used by service providers and applications. All the functions
areimmediate since they are completely processed inside the XFS Manager, or use only immediate functions
of the service providers.

6.1 WEMAllocateBuffer

HRESULT WFMAllocateBuffer (ulSize, ulFlags, IppvData)

Allocates a memory buffer for the service provider in which to return results.

Parameters ULONG ulSize
Size (in bytes) of the memory to be allocated.

ULONG ulFlags
Flags, see comments below.

LPVOID * IppvData
Address of the variable in which the XFS Manager will place the pointer to the allocated
memory.

Comments A service providemustuse this call when creating data structures for the XFS Manager or an
application to use, and may use it when allocating memory for its own private use. The flags
can be ORed together, and specify:

WFS_MEM_SHARE Allocates shareable memory.
WFS_MEM_ZEROINIT Initializes memory contents to zero (not required in 32 bit
Windows).

The application, XFS Manager or service provider tineist in turn, use th®/FSFreeResult
or WFMFreeBuffer functions to deallocate the memory.
Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF MEMORY
There is not enough memory available to satisfy the request.

See also WFMAllocateMore WFMFreeBuffer, WFSFreeResultand Section 3.13.

6.2 WFEMAllocateMore

HRESULT WFMAllocateMore (ulSize, IpvOriginal, IppvData)
Allocates a memory buffer, linking it to an previously allocated one.
Parameters ULONG ulSize

Size (in bytes) of the memory to be allocated

LPVOID IpvOriginal
Address of the original buffer to which the newly allocated buffer should be linked

LPVOID * IppvData
Address of the variable in which the XFS Manager will place the pointer to the newly
allocated memory.

Page 90

CWA 13449-1:1998

Comments

Error Codes

See also

This function allocates an additional memory buffer and link it to one previously allocated by
WFMAllocateBuffer. The returned buffer has the same properties as the previous buffer
(i.e., the WFS_MEM_SHARE and WFS_MEM_ZEROINIT flags) and it can be fsadby
freeing the original buffer (using/FMFreeBuffer or WFSFreeResul).

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_ADDRESS
ThelpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_OUT_OF_MEMORY
There is not enough memory available to satisfy the request.

WFMAllocateBuffer, WFMFreeBuffer, WFSFreeResultand Section 3.13.

6.3 WEMFreeBuffer

HRESULT

WFMFreeBuffer (IpvData)

Releases the memory buffer(s) allocated\tiyMAllocateBuffer andWFMAIllocateMore .

Parameters

Comments

Error Codes

See also

LPVOID [pvData
Address of the memory buffer to free.

SeeWFMAllocateBuffer andWFSFreeResult This function frees a set of one or more
linked buffers, as does th#FSFreeResultAPI function, except that it is used by service
providers to free memory that they have allocated for "private” use, via the
WFMAllocateBuffer andWFMAllocateMore functions.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_BUFFER
ThelpvDataparameter is not a pointer to an allocated buffer structure.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFMAllocateBuffer, WFMAIllocateMore WFSFreeResultand Sectior8.13.

6.4 WFMGetTracelLevel

HRESULT

WFMGetTracelLevel (hService, IpdwTracelLevel)

Returns the trace level associated with the spedifgatvice(at run time). Se@&/FMSetTracelLevel.

Parameters

Mode

Comments

Error Codes

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen

LPDWORD IpdwTraceLevel
Pointer to the value defining the current trace level (returned parameter).

Immediate

This function returns the current tracing levels in the XFS Manager and the service provider
specified byhService SeeWFMSetTraceLevel.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

Page 91
CWA 13449-1:1998

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggig8StartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; $SCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

See Also WFMSetTracelLevel, WFSOpen, WFSAsyncOpen

6.5 WFMKIillTimer

HRESULT WFMKIllTimer (wTimerID)
Cancels the timer identified by théTimerID parameter. Any pending WFS_TIMER_EVENT message
associated with the timer is removed from the message queue.

Parameters WORD wTimerlD
ID of the timer to be canceled.
Comments SeeWFMSetTimer.
Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID TIMER
TheusTimerlDparameter does not correspond to a currently active timer.

6.6 WFMOutputTraceData

HRESULT WFMOutputTraceData (lpszData)
Requests the XFS Manager to output the specified data to the current trace destination.
Parameters LPSTR IpszData

Pointer to a null-terminated string containing the trace data.

Comments Normally used by a service provider that has been requestédRNESetTracelLevel to trace
its operation. The XFS Manager adds standard header information (timestamp, etc.) to the data
before writing it to the trace stream. Note that the XFS Manager also writes data to the trace
stream if the appropriate trace level(s) have been requested.

Error Codes If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

6.7 WFMReleaseDLL

HRESULT WFMReleaseDLL (hProvider)
Notifies the XFS Manager that the service provider is available to be unloaded from memory.
Parameters HPROVIDER hProvider

Handle to the service provider, obtained from the XFS Manager WHROpen call.

Comments This function initiates the process in which the service provider is unloaded from memory by
the XFS Manager. However, note that the Manager must issM¢RR&nloadService

Page 92

CWA 13449-1:1998

Error Codes

function to the service provider before it actually unloads the service provider DLL. The
recommended procedure is as follows:

The service provider finishes processing\WiePClosefor its last open session

The SP does appropriate cleanup (deallocating memory, killing separate threads, etc.)

The SP posts the WFS_CLOSE_COMPLETE message for the final close

The SP call®WFMReleaseDLL, and after the return from this call, does nothing other

than return from the procedure that caM#&MReleaseDLL

e The XFS Manager cal/FPUnloadService verifying that the SP is in fact still ready to
be unloaded

o |fthe SP says OK, the XFS Manager unloads the SP DLL

If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_INVALID HPROVIDER
ThehProviderparameter is not a valid provider handle.

6.8 WEMSetTimer

HRESULT

WEMSetTimer (hWnd, IpContext, dwTimeVal, lpwTimeriD)

Starts a system timer.

Parameters

Comments

Error Codes

HWND hWnd
The window to which the requested timer message is to be posted.

LPVOID [pContext
Context pointer supplied by the service provider requesting the timer; may be NULL.

DWORD dwTimeVal
Timer value (in milliseconds).

LPWORD IpwTimeriD
Pointer to the timer identifier (returned parameter).

The WFMSetTimer function requests the XFS Manager to start a system timer with the
specified time value; when that time interval expires, the XFS Manager posts a
WFS_TIMER_EVENT message to the specifidind containing thevTimer|D value and
thelpContextpointer.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

6.9 WFMSetTracelLevel

HRESULT

WFMSetTracelLevel (hService, dwTracelLevel)

Sets the specified trace level(s) at run time; to be used for debugging and testing purposes.

Parameters

Mode

HSERVICE hService
Handle to the service provider as returned\iySOpen or WFSAsyncOpen

DWORD dwTracelLevel
The level(s) of tracing being requested. See below.

Immediate

Comments

Error Codes

See Also

Page 93
CWA 13449-1:1998

IssuingWFMSetTracelLevel for a service enables tracing on that service at various levels.
Five standard trace levels are predefined:

WFES_TRACE_API 0x00000001
Trace all input and output parameters of all API function calls using the spéxSigedice
WFS_TRACE_ALL_API 0x00000002

Trace all input and output parameterafAPI function calls associated with the service
provider identified by the specifidtServicenot just the ones associated with the specified
hService

WFS_TRACE_SPI 0x00000004

Trace all input and output parameters of all SPI function calls associated with the specified
hService as well as all notification and event messages generated by the service provider for
thehService

WFS_TRACE_ALL_SPI 0x00000008

As for WFS_TRACE_ALL_API, but tracall SPI, notification and event activity on the
service providemot just that associated with the specifieslervice

WFS_TRACE_MGR 0x00000010
Trace the support functiong/FMxxxxx) of the XFS Manager.

Other standard trace levels may be defined in the future, and a range of trace level values (the
high order 16 bits of this parameter) is reserved for use by individual service providers.
Examples of other functions that may be traced include network messages, interactions
between the service provider and service, and device interface interaction.

Trace level values can be ORed together in a sthgleraceLeveparameter to request more
than one kind of tracing be started. A NULL value stops all tracing.

If more than one process may be using the trace facility, this function should always be
preceded with a call to th&FMGetTracelLevel function. This value returned by this

function is ORed together with the new trace level(s), and the resulting value is used with
WFMSetTraceLevel, thus adding the new trace level(s) to whatever the existing trace level(s)
had been,

This function has the highest priority to the XFS Manager and the service provider; they
activate the trace as soon as possible. Note that the XFS Manager performs all the traces
defined above, other than the completion and event messages posted by the service providers.

WFSOpenandWFSAsyncOpenalso include an option to set these trace levels, to allow the
open process itself to be traced.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_TRACELEVEL
ThedwTracelLeveparameter does not correspond to a valid trace level or set of levels.

WFS_ERR_NOT_STARTED
The application has not previously performed a succedffgStartUp.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; ¥vSCancelBlockingCalland
WEFSIsBlocking are permitted at this time.

WFMGetTracelLevel, WFPSetTracelLevel, WFSOpen, WFSAsyncOpen

Page 94
CWA 13449-1:1998

7. Configuration Functions

See Section 3.7 for the overall discussion of configuration information. The configuration functions are used by
service providers and applications to write and retrieve the configuration information for a XFS subsystem,
which is stored in a hierarchical structure called the XFS configuration registry. The structure and the functions
are based on the Win32 Registry architecture and API functions, and are implemented in Windows NT and
future versions of Windows using the Registry and the associated functions.

The logical structure of the configuration information is shown below.

The XFS Manager key has the following optional values:

e TraceFile the name of the file containing trace data. If this value is not set in the
configuration, trace data is written to the default file path\name
C:\XFSTRACE.LOG.

e ShareFilename the name of the memory mapped file used by the memory management functions
of the XFS Manager.

e ShareFilesize the size of the memory mapped file used by the memory management functions
of the XFS Manager.

Some additional values could be also defined in the XFS SDK release notes. Please refer to the related document
for more information.

A logical service key has three mandatory values:

e class the service class of the logical service. The standard values are described in the
Service Class Definition Document and in the service class include files.

o type the service type of the logical service; the standard values are in the SDK
e provider the name of the service provider that provides the logical service

(the key name of the corresponding service provider key)

A service provider key also has three mandatory values:
e dllname the name of the file containing the service provider DLL
e vendor_name the name of the supplier of this service provider
e version the version number of this service provider

Page 95
CWA 13449-1:1998

WOSA/XFS Registry ~ Second Level Keys Third Level Keys Values
Root

WOSA/XFS_ROOT

XFS_MANAGER
TraceFile=<path-name>\<trace-file-
name>
ShareFilename=<path-name>\
<share-file-name>
ShareFilesize=<file size in bytes>

LOGICAL_SERVICES

- <Logical Service Name>
There is one of these

: class=<service class>
keys for each logical tVDe=<service tvpe>
service accessible in ype.— service ype
this system. provider=<provider name>

< optional values >

SERVICE_PROVIDERS

<Provider Name>

There is one of these dliname=< DLL name>
keys for each service

provider accessible in vendor_name=<vendor name>
this system version=<version>
< optional values >

< other keys >

Page 96

CWA 13449-1:1998

7.1 WFMCloseKey

HRESULT

WFMCloseKey (hKey)

Closes the specified key.

Parameters

Comments

Error Codes

HKEY hKey
Handle to the currently open key that is to be closed.

Thehkeyhandle can not be used after it has been closed, because it will no longer be valid.
Note that it is not valid to close the XFS root key (pasgiis CFG_HKEY_XFS ROOT
as value fohkeyparameter)

If the function return is not WFS_SUCCESS, it is the following error condition:

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key, or it is the XFS
root.

7.2 WFMCreateKey

HRESULT

WFMCreateKey (hKey, IpszSubKey, phkResult, IndwDisposition)

Creates a new key, or if the specified key exists, opens it.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The key opened or created by this function is a subkey of the key identified by this
parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string containing the name of the key to be created or opened.

PHKEY phkResult
Pointer to a variable that receives the handle of the created or opened key.

LPDWORD IpdwDisposition
Pointer to a variable that receives one of the disposition values:
WFS_CFG_CREATED_NEW_KEY
WFS_CFG_OPENED_EXISTING_KEY

If this function creates a new key, it has no values. VWR#SetValue function is used to
create values.

If the function return is not WFS_SUCCESS, it is one of the following error conditions:

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 97
CWA 13449-1:1998

7.3 WFMDeleteKey

HRESULT

WFMDeleteKey (hKey, IpszSubKey)

Deletes the specified key. This function cannot delete a key that has subkeys.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The key specified by thpszSubKeparameter must be a subkey of the key identified by
this parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string specifying the name of the key to be deleted.

If this function succeeds, the specified key is removed from the configuration information.
The entire key, including all its values, is removed.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified bipszSubKeyloes not exist.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

7.4 WFMDeleteValue

HRESULT

WFMDeleteValue (hKey, IpszValue)

Deletes the specified value (both name and data).

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT

LPSTR IpszValue
Pointer to a null-terminated string specifying the name of the value to be deleted.

The specified value is removed from the specified open key WiHiMdSetValue function is
used to create or modify values.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 98

CWA 13449-1:1998

7.5 WFMEnumKey

HRESULT

WEMEnumKey (hKey, iSubKey, IpszName, I[pcchName, IpftLastWrite)

Enumerates the subkeys of the specified open key. Retrieves information about one subkey each time it is

called.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The keys enumerated by this function are subkeys of the key identified by this parameter.

DWORD SubKey
The index of the subkey to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the subkeys of
the specified open key.

Because subkeys are not ordered, any new subkey will have an arbitrary index. This means
that the function may return subkeys in any order.

LPSTR IpszName
Pointer to a buffer that receives the name of the subkey, including the terminating null
character.

LPDWORD IpcchName
Pointer to a variable that specifies the size, in characters, of the buffer specified by the
IpszNameparameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the tiffer,
including the terminating null character.

PFILETIME IpftLastWrite
Pointer to a variable that receives the time the enumerated subkey was last written to, in the
form of a FILETIME structure (sédicrosoft Win32 Programmer's Reference, V§i. 5

typedef struct _FILETIME {
DWORD dwLowDateTime;
DWORD dwHighDateTime;
} FILETIME;

While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being enumerated.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returnedifihbKeyparameter is greater than the index
of the last subkey).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 99
CWA 13449-1:1998

7.6 WFMEnumValue
HRESULT WFEMEnumValue (hKey, iValue, IpszValue, IpcchValue, IpszData, IpcchData)

Enumerates the values of the specified open key. Retrieves the name and data for one value each time it is
called.

Parameters HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The value enumerated by this function is a value of the key identified by this parameter.

DWORD iValue
The index of the value to retrieve. This parameter should be zero for the first call to this
function, then incremented for each subsequent call, in order to enumerate all the values of
the specified open key.

Because values are not ordered, any new value will have an arbitrary index. This means that
the function may return values in any order.

LPSTR IpszValue
Pointer to a buffer that receives the name of the value, including the terminating null
character.

LPDWORD IpcchValue
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
IpszValueparameter. This size should include the terminating null character. When the
function returns, this variable contains the the number of characters actually stored in the
buffer, not including the terminating null character.

LPSTR IpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character. This parameter can be NULL, if the data is not required.

LPDWORD IpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
IpszDataparameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the fmiffer,
including the terminating null character. IgnoretpgzDatais NULL.

Comments While a program is using this function iteratively, it should not call any other configuration
functions that would change the key being queried.

Error Codes If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more values to be returnediffb&ie parameter is greater than the index of
the last value).

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 100

CWA 13449-1:1998

7.7 WFMOpenKey

HRESULT

WFMOpenKey (hKey, IpszSubKey, phkResult)

Opens the specified key.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The key opened by this function is a subkey of the key identified by this parameter.

LPSTR IpszSubKey
Pointer to a null-terminated string containing the name of the key to be opened. If this
parameter is NULL, or points to an empty string, the function opens another handle to the
key identified by thdnKeyparameter (and doest close any previously opened handles).

PHKEY phkResult
Pointer to a variable that receives the handle of the opened key.

In contrast with th&VFMCreateKey function, this function does not create the specified key
if it does not exist.
If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified bipszSubKeyloes not exist.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 101
CWA 13449-1:1998

7.8 WFMQueryValue

HRESULT

WFMQueryValue (hKey, IpszValueName, IpszData, IpcchData)

Retrieves the data for the value with the specified name, within the specified open key.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The value data returned is within the key identified by this parameter.

LPSTR IpszValueName
Pointer to a null-terminated string containing the name of the value being queried.

LPSTR IpszData
Pointer to a buffer that receives the data for the value entry, including the terminating null
character.

LPDWORD IpcchData
Pointer to a variable that specifies the size, in characters, of the buffer pointed to by the
IpszDataparameter, including the terminating null character. When the function returns,
this variable contains the the number of characters actually stored in the tiffer,
including the terminating null character.

If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by tHpszValueNamearameter does not exist in the specified key.

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 102

CWA 13449-1:1998

7.9 WFMSetValue

HRESULT

WFMSetValue (hKey, IpszValueName, IpszData, cchData)

Stores data in the specified value of the specified key. If the value does not exist, it is created.

Parameters

Comments

Error Codes

HKEY hKey
Handle to a currently open key, or the predefined handle value:
WFS_CFG_HKEY_XFS_ROOT
The value set or created is within the key identified by this parameter.

LPSTR IpszValueName
Pointer to a null-terminated string containing the name of the value being set. If a value
with this name does not already exist in the specified key, it is added to the key.

LPSTR IpszData
Pointer to a buffer containing the data (a null-terminated character string) to be stored with
the specified value name.

DWORD cchData
The size, in characters, of the string pointed to bypseDataparameter, including the
terminating null character.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the configuration information.
If the function return is not WFS_SUCCESS, it is one of the following error conditions.

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

Page 103
CWA 13449-1:1998

8. Data Structures

8.1 WFSRESULT

This structure has three functions:

e ltis the parameter which returns the results of the synchra&®t ock, WFSExecuteandWFSGetInfo
commands.

e |tis pointed to byall command completion messages, and delivers completion status (as a result handle) and
results data (if any) faall asynchronous API and SPI calls.

e |tis pointed to byall event notification messages to deliver their contents.

Note that even though in many cases one or more members of this structure are not uepkticheoha
single, standard structure for request results simplifies the implementation and maintenance of applications,
service providers and the XFS Manager itself.

typedef struct _wfs_result {
REQUESTID RequestID;
HSERVICE hService;
TIMESTAMP tsTimestamp;
HRESULT hResult;

union {
DWORD dwCommandCode;
DWORD dwEventID;

Jatk

LPVOID IpBuffer;
} WFSRESULT, * LPWFSRESULT

The members of this structure are:

Field Description

RequestID Request ID of the completed command; not used for event notifications other than
Execute events

hService Service handle identifying the session that created the result

tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)

hResult Result handle (note that for synchron®BSExecuteandWFSGetinfo commands,

this value is identical to the synchronous function return value)

u.dwCommandCode WFSExecute‘command” code oWWFSGetInfo “category” code; not used for other
command completions

u.dwEventiD ID of the event (for unsolicited events)

IpBuffer Pointer to the results of the command (if any) or the contents of the event notification

8.2 WFSVERSION

This structure is used to return version information flFSStartUp, WFSOpenandWFPOpen.

typedef struct _wfsversion {

WORD wVersion;

WORD wLowVersion;

WORD wHighVersion;

char szDescription[WFSDDESCRIPTION_LEN+1];
char szSystemStatus[WFSDSYSSTATUS_LEN+1];

} WFSVERSION, *LPWFSVERSION

The members of this structure are (note that this structure is used to report version information for three distinct
XFS interfaces: API, SPI, and the service-specific interface):

Element Usage

wVersion The version number to be used.
wLowVersion The lowest version number that the called DLL can support.
wHighVersion The highest version number that the called DLL can support.

Page 104
CWA 13449-1:1998

szDescription A null-terminated ASCII string into which the called DLL copies a description of the
implementation. The text (up to 256 characters in length) may contain any characters: the
most likely use that an application will make of this is to display it (possibly truncated) in a
status message.

szSystemStatus A null-terminated ASCII string into which the called DLL copies relevant status or
configuration information. Not to be considered as an extension sfirescriptiorfield.
Used only if the information might be useful to the user or support staff.

Page 105
CWA 13449-1:1998

9. Messages

This section defines the Windows messages used in the XFS subsystem.

9.1 Command Completions and Events

The following messages are sent to indicate:
e the completion of an asynchronous command, or
e the occurrence of an unsolicited event (execute, service, user, or system events).

All these messages have the same definition:
wParam: not used
IParam: points to a WFSRESULT data structure

WFS_<message_name>
wParam; /* not used */
IParam = LPWFSRESULT IpWFSResult;

9.1.1 Command Completion Messages
WFS_OPEN_COMPLETE
WFS_CLOSE_COMPLETE
WFS_LOCK_COMPLETE
WFS_UNLOCK_COMPLETE
WFS_REGISTER_COMPLETE
WFS_DEREGISTER_COMPLETE
WFS_GETINFO_COMPLETE
WFS_EXECUTE_COMPLETE

9.1.2 Event Messages
WFS_EXECUTE_EVENT
WES_SERVICE_EVENT
WFS_USER_EVENT
WES_SYSTEM_EVENT

9.2 Timer Events

The timer event message has the following format\(¢eMSetTimer, WFMKIillTimer) :

WFS_TIMER_EVENT
wParam = wTimerlD; /* timer ID returned by the WFMSetTimer function */
IParam = IpContext; /* context pointer supplied by the service provider */

/* that requested the timer; may be NULL */

9.3 Device Status Changes

Status changes of logical services (which typically reflect changes in physical devices) are reported as system
events. This is in addition to being reported by the WFS_INF_xxx_STATUS queryWHB&etInfo or
WFSAsyncGetinfo functions. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Page 106
CWA 13449-1:1998

Field Description
RequestID (not used)
hService Service handle identifying the session that created the result
tsTimestamp Time the status change occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventID =WFS_SYSE_DEVICE_STATUS
IpBuffer Pointer to a WFSDEVSTATUS structure:
typedef struct wfs_devstatus {
LPSTR IpszPhysicalName;
LPSTR IpszWorkstationName;
DWORD dwState;

} WFSDEVSTATUS, * LPWFSDEVSTATUS;

The members of this structure are:

Field Description

IpszPhysicalName Pointer to the physical service name of the service that changed its state.
IpszWorkstationNamePointer to the name of the workstation in which the logical service name is defined.

dwState Specifies the new state of the physical device managed by the service as one of the
following:
Value Meaning
WFS_STAT_DEVONLINE The device is online (i.e., powered on and
operable).
WFS_STAT_DEVOFFLINE The device is offline (e.g., the operator has taken

the device offline).
WFS_STAT_DEVPOWEROFF The device is powered off.
WFS_STAT_DEVNODEVICE There is no device connected.
WFS_STAT DEVHWERROR The device is inoperable due to a hardware error.
WFS_STAT_DEVUSERERROR The device is inoperable because a person is
preventing proper device operation.

9.4 Undeliverable Messages

If a command completion or event message cannot be delivered, it is reported as a system event. The
WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session associated with the completion or event
tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventID =WFS_SYSE_UNDELIVERABLE_MSG
IpBuffer Pointer to a WFSUNDEVMSG structure:
typedef struct _wfs_undevmsg {
LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszApplD;
DWORD dwsSize;
LPBYTE IpbDescription;
DWORD dwMsg;

LPWFSRESULT IpWFSResult;
} WFSUNDEVMSG, * LPWFSUNDEVMSG

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service that generated the original
undeliverable message
IpszWorkstationNamePointer to the the name of the workstation in which the logical service name is defined

Page 107
CWA 13449-1:1998

IpszAppID Pointer to the the application ID associated with the session that generated the original
message

dwSize The size in bytes of the following description

IpbDescription Pointer to a vendor-specific description of the reason why the message could not be
delivered

dwMsg The message identifier of the original message

IpPWFSResult Pointer to the WFSRESULT structure of the original message (which hipdtiféer

parameter set to NULL)

9.5 Application Disconnect

If the XFS subsystem loses connection to an application, it closes the session (see Section 3.6) and generates this
system event. The WFSRESULT data structure (defined in Section 8.1) is utilized as follows:

Field Description
RequestID (not used)
hService Service handle identifying the session associated with the event
tsTimestamp Time the event occurred (local time, in a Win32 SYSTEMTIME structure)
hResult (not used)
u.dwEventlD = WFS_SYSE_APP_DISCONNECT
IpBuffer Pointer to a WFSAPPDISC structure:
typedef struct _wfs_appdisc {
LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

} WFSAPPDISC, * LPWFSAPPDISC;

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service that the application was connected to
IpszWorkstationNamePointer to the the name of the workstation in which the logical service name is defined
IpszAppID Pointer to the the application ID associated with the session that generated the event

9.6 Hardware and Software Errors

Hardware and software errors are reported as system events. In most cases, this is in addition to being reported
via the WFS_ERR_HARDWARE_ERROR or the WFS_ERR_SOFTWARE_ERROR error code that is returned
when a hardware or software error occurs in the course of executing a function. The WFSRESULT data
structure (defined in Section 8.1), is utilized as follows:

Field Description
RequestID Request ID of the request being processed when the error occurred (if any)
hService Service handle identifying the session associated with the error (if any)
tsTimestamp Time the error occurred (local time, in a Win32 SYSTEMTIME structure)
hResult Result handle of the request being processed when the error occurred (if any)
u.dwEventiD The ID of the error

Value Meaning

WFS_SYSE_HARDWARE_ERROR The error is a hardware error
WFS_SYSE_SOFTWARE_ERROR Th error is a software error

IpBuffer Pointer to a WFSHWERROR structure:

Page 108
CWA 13449-1:1998

typedef struct _wfs_hwerror {

LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

DWORD dwsSize;

LPBYTE IpbDescription;

} WFSHWERROR, * LPWFSHWERROR

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service that generated the error (if any)
IpszWorkstationNamePointer to the the name of the workstation in which the logical service name is defined (if

any)
IpszAppID Pointer to the application ID associated with the session that generated the error (if any)
dwSize The size in bytes of the following description
IpbDescription Pointer to a vendor-specific description of the error

9.7 Version Negotiation Failures

Failures in version negotiation are reported as system events. This is in addition to being reported by the version
error code returned by tM¢FSStartUp or WFSOpenfunctions. The WFSRESULT data structure (defined in
Section 8.1) is utilized as follows:

Field Description
RequestID (not used)
hService (not used)
tsTimestamp Time the error occurred (local time, in a Win32 SYSTEMTIME structure)
hResult The version error code (e.g., WFS_ERR_SPI_VER_TOO_HIGH)
u.dwEventiD =WFS_SYSE_VERSION_ERROR
IpBuffer Pointer to a WFSVRSNERROR structure:
typedef struct _wfs_vrsnerror {
LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;
DWORD dwSize;
LPBYTE IpbDescription;

LPWFSVERSION IpWFSVersion;
} WFSVRSNERROR, * LPWFSVRSNERROR

The members of this structure are:

Field Description

IpszLogicalName Pointer to the logical service name of the service being opened (NWLESStartUp)
IpszWorkstationNamePointer to the name of the workstation in which the application madi'FE&StartUp

or WFSOpenrequest
IpszAppID Pointer to the application ID from the open request that failed (NUWHSStartUp)
dwSize The size in bytes of the following description
IpbDescription Pointer to a vendor-specific description of the version negotiation failure

IpWFSVersion Pointer to the WFSVERSION structure reporting the results of the version negotiation

Page 109
CWA 13449-1:1998

10. Error Codes

The following are the error codes that can be returned from a call to a XFS API or SPI function, either as a
function return or in a result structure pointed to by a completion message. Errors from service-specific
commands are defined in the specifications for each service class.

WFS_ERR_ALREADY_STARTED
A WFSStartUp has already been issued by the application, without an intervafiSgleanUp.

WFS_ERR_API_VER_TOO_ HIGH
The range of versions of XFS API support requested by the application is higher than any supported by this
particular XFS Manager implementation.

WFS_ERR_API_VER_TOO_LOW
The range of versions of XFS API support requested by the application is lower than any supported by this
particular XFS Manager implementation.

WFS_ERR_CANCELED
The request was canceled\WFSCancelAsyncRequesbr WFSCancelBlockingCall

WFS_ERR_CFG_INVALID_HKEY
The specifiechKeyparameter does not correspond to a currently open key.

WFS_ERR_CFG_INVALID_NAME
The value specified by tHpszValueNamearameter does not exist in the specified key.

WFS_ERR_CFG_INVALID_SUBKEY
The key specified bipszSubKeyloes not exist.

WFS_ERR_CFG_INVALID_VALUE
The specified value does not exist within the specified open key.

WFS_ERR_CFG_KEY_NOT_EMPTY
The specified key has subkeys and cannot be deleted. The subkeys must be deleted first.

WFS_ERR_CFG_NAME_TOO_LONG
The length of the name to be returned exceeds the length of the buffer.

WFS_ERR_CFG_NO_MORE_ITEMS
There are no more subkeys to be returnedifhbKeyparameter is greater than the index of the last subkey).

WFS_ERR_CFG_VALUE_TOO_LONG
The length of the value to be returned exceeds the length of the buffer.

WFS_ERR_CONNECTION_LOST
The connection to the service is lost.

WFS_ERR_DEV_NOT_READY
The function required device access, and the device was not ready or timed out.

WFS_ERR_HARDWARE_ERROR
The function required device access, and an error occured on the device.

WFS_ERR_SOFTWARE_ERROR
The function required access to configuration information, and an error occured on the software.

WFS_ERR_INTERNAL_ERROR
An internal inconsistency or other unexpected error occurred in the XFS subsystem.

WFS_ERR_INVALID_ADDRESS
ThelpvOriginal parameter does not point to a previously allocated buffer.

WFS_ERR_INVALID_APP_HANDLE
The specified application handle is not valid, i.e., was not created by a preceding create call.

WFS_ERR_INVALID_BUFFER
ThelpvDataparameter is not a pointer to an allocated buffer structure.

WES_ERR_INVALID_CATEGORY

Page 110
CWA 13449-1:1998

ThedwCategoryissued is not supported by this service class.

WFS_ERR_INVALID_COMMAND
ThedwCommandssued is not supported by this service class.

WFS_ERR_INVALID_EVENT_CLASS
ThedwEventClasparameter specifies one or more event classes not supported by the service.

WFS_ERR_INVALID_HSERVICE
ThehServiceparameter is not a valid service handle.

WFS_ERR_INVALID_HPROVIDER
ThehProviderparameter is not a valid provider handle.

WFS_ERR_INVALID_HWND
ThehWndparameter is not a valid window handle.

WFS_ERR_INVALID_HWNDREG
ThehWndRegarameter is not a valid window handle.

WFS_ERR_INVALID_POINTER
A pointer parameter does not point to accessible memory.

WFS_ERR_INVALID_DATA
The data structure passed as input parameter contains invalid data..

WFS_ERR_INVALID_REQ ID
The RequestiDparameter does not correspond to an outstanding request on the service.

WFS_ERR_INVALID_RESULT
ThelpResultparameter is not a pointer to an allocated WFSRESULT structure.

WFS_ERR_INVALID_SERVPROV
The file containing the service provider is invalid or corrupted.

WFS_ERR_INVALID_TIMER
The hWndandusTimerlDparameters do not correspond to a currently active timer.

WFS_ERR_INVALID_TRACELEVEL
ThedwTraceLeveparameter does not correspond to a valid trace level or set of levels.

WFS _ERR_LOCKED
The service is locked under a differ&@ervice

WFS_ERR_NO_BLOCKING_CALL
There is no outstanding blocking call for the specified thread.

WFS_ERR_NO_SERVPROV
The file containing the service provider does not exist.

WFS_ERR_NO_SUCH_THREAD
The specified thread does not exist.

WFS_ERR_NO_TIMER
The timer could not be created.

WFS_ERR_NOT_LOCKED
The application requesting a service be unlocked had not previously performed a suddeSsfutk or
WFSAsyncLock

WFS_ERR_NOT_OK_TO_UNLOAD
The XFS Manager may not unload the service provider DLL.

WFS_ERR_NOT_STARTED
The application has not previously performed a succeggigStartUp.

WFS_ERR_NOT_REGISTERED
The specifiechWndRegvindow was not registered to receive messages for any event classes.

WFS_ERR_OP_IN_PROGRESS
A blocking operation is in progress on the thread; WikSCancelBlockingCallandWFSIsBlocking are
permitted at this time.

Page 111
CWA 13449-1:1998

WFS_ERR_OUT_OF MEMORY
There is not enough memory available to satisfy the request.

WFS_ERR_SERVICE_NOT_FOUND
The logical name is not a valid service provider name.

WFS_ERR_SPI_VER_TOO_HIGH
The range of versions of XFS SPI support requested by the XFS Manager is higher than any supported by the
service provider for the logical service being opened.

WFS_ERR_SPI_VER_TOO_LOW
The range of versions of XFS SPI support requested by the XFS Manager is lower than any supported by the
service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_HIGH
The range of versions of the service-specific interface support requested by the application is higher than any
supported by the service provider for the logical service being opened.

WFS_ERR_SRVC_VER_TOO_LOW
The range of versions of the service-specific interface support requested by the application is lower than any
supported by the service provider for the logical service being opened.

WFS_ERR_TIMEOUT
The timeout interval expired.

WFS_ERR_UNSUPP_CATEGORY
ThedwCategoryissued, although valid for this service class, is nppstted by this service provider.

WFS_ERR_UNSUPP_COMMAND
ThedwCommandssued, although valid for this service class, is nppstted by this service provider or device.

WFS_ERR_VERSION_ERROR_IN_SRVC
Within the service, a version mismatch of two modules occurred.

Page 112
CWA 13449-1:1998

Annex A - Planned Enhancements and Extensions

This section describes functions and facilities that are not fully defined in this version of the Extensions for
Financial Services specification; modifications and complete definitions will be supplied in later versions.
Vendor and user input is encouraged on these functions and facilities, as well as suggestions as to additional
functionality.

XFS currently includes specifications for access to the key classes of financial peripherals for attended and self-
service environments. These existing specifications will be extended and enhanced based on vendor and user
experience with them. The Service Class Definition Document lists the classes of devices or services that,
together with others that customers and vendors request, will be evaluated for inclusion in future versions of this
specification.

Also to be considered for future versions of XFS are other types of services, such as financial transaction
messaging and management, as well as related services for financial networks such as network and systems
management and security. As with the current specification, all these capabilities will be specified for access
from the familiar, consistent Microsoft Windows user interface and programming environments.

Another portion of the XFS API set will deal with administration issues.

A.1 Event and System Management

The XFS subsystem will need additional facilities for managing exception conditions (i.e., those that are not
anticipated in the error codes, events, etc., that are defined in this specification). One general facility for this is
the system event capability, as described in Sections 3.11 and 9. This will utilize a combination of one or more
functions provided by the XFS Manager and other methods for applications, the XFS Manager, service
providers, and services to report exception conditions in special circumstances (e.g., when the XFS Manager is
not available). Such conditions would presumably be monitored by a system management agent responsible for
logging and reporting them via a network management facility.

Page 113
CWA 13449-1:1998

Annex B - CEN/ISSS Workshop on XFS Contacts

Please submit comments and questions on the Extensions for Financial Services to:

XFS Workshop Secretariat:

AFNOR
Tour Europe
F-92049 Paris La Defense Cedex

Tel: +33 1 4291 5555
Fax: +33 1 4291 5656

CEN/ISSS Workshop Secretariat :

Luc Van den Berghe

CEN/ISSS
Rue de Stassart 36
B-1050 Brussels

Tel: +32 2 55 00 813
Fax: +32 2 55 00 966
email:luc.vandenberghe@cenorm.be

Updated versions of this specification will be released as CWA.

Page 114
CWA 13449-1:1998

Annex C - C-Header files

C.1 XFSAPI.H

JRFFIRK I I ST I KKK K *% * *kkkkkkkhkkkkk *% *% * *kkkkk

*

* xfsapi.h XFS - API functions, types, and definitions
*

Version 2.00 -- 11/11/96

*
*
*

*

*

#ifndef __inc_xfsapi__h
#define __inc_xfsapi__h

#ifdef __cplusplus
extern "C" {
#endif

/* be aware of alignment */
#pragma pack(push,1)

Fkkkkk *% *% * *kkkkkkkhkkkkk *% *% * Fkkkkk xxx/

/****** Common *kk*k *% * * *kk *kk * *% *% *
#include <windows.h>

typedef unsigned short USHORT;
typedef char CHAR;

typedef short SHORT;

typedef unsigned long ULONG;
typedef unsigned char UCHAR;
typedef SHORT * LPSHORT;
typedef LPVOID * LPLPVOID;
typedef ULONG * LPULONG;
typedef USHORT * LPUSHORT;

typedef ULONG REQUESTID;
typedef REQUESTID * LPREQUESTID;

typedef HANDLE HAPP;
typedef HAPP * LPHAPP;

typedef SYSTEMTIME TIMESTAMP;

typedef USHORT HSERVICE;
typedef HSERVICE * LPHSERVICE;

typedef LONG HRESULT;
typedef HRESULT * LPHRESULT;

typedef BOOL (WINAPI * XFSBLOCKINGHOOK)(VOID);
typedef XFSBLOCKINGHOOK * LPXFSBLOCKINGHOOK;

/****** Strlng |engths *% *% * * *kk *k%k * *% *% *

#define WFSDDESCRIPTION_LEN
#define WFSDSYSSTATUS_LEN

[rrxxxk \alues of WFSDEVSTATUS . fwState *rxrrrrrriiikik

#define WFS_STAT_DEVONLINE
#define WFS_STAT_DEVOFFLINE
#define WFS_STAT_DEVPOWEROFF
#define WFS_STAT_DEVNODEVICE
#define WFS_STAT_DEVHWERROR
#define WFS_STAT_DEVUSERERROR
#define WFS_STAT_DEVBUSY

o

[eex00 Value of WFS_DEFAULT_HAPP *xssecxsiiiccnsik

#define WFS_DEFAULT_HAPP

Page 115
CWA 13449-1:1998

/****** Data Structures *% *% * * *kk *kk * *% *% * x/

typedef struct _wfs_result

REQUESTID RequestID;
HSERVICE hService;
TIMESTAMP tsTimestamp;
HRESULT hResult;
union {
DWORD dwCommandCode;
DWORD dwEventID;
hu;
LPVOID IpBuffer;

} WFSRESULT, * LPWFSRESULT;

typedef struct _wfsversion

WORD wVersion;

WORD wLowVersion;

WORD wHighVersion;

CHAR szDescription[WFSDDESCRIPTION_LEN+1];
CHAR szSystemStatus[WFSDSYSSTATUS_LEN+1];

} WFSVERSION, * LPWFSVERSION,;

/****** Message Structures *% * *k%k *kk *kkkkk *% * * * 7(/

typedef struct _wfs_devstatus

LPSTR IpszPhysicalName;
LPSTR IpszWorkstationName;
DWORD dwState;

} WFSDEVSTATUS, * LPWFSDEVSTATUS;

typedef struct _wfs_undevmsg

LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

DWORD dwSize;

LPBYTE IpbDescription;
DWORD dwMsg;
LPWFSRESULT IPWFSResult;

} WFSUNDEVMSG, * LPWFSUNDEVMSG;

typedef struct _wfs_appdisc

LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

} WESAPPDISC, * LPWFSAPPDISC;

typedef struct _wfs_hwerror

LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

DWORD dwSize;

LPBYTE IpbDescription;

} WFSHWERROR, * LPWFSHWERROR,;

typedef struct _wfs_vrsnerror

LPSTR IpszLogicalName;
LPSTR IpszWorkstationName;
LPSTR IpszAppID;

DWORD dwSize;

LPBYTE IpbDescription;

LPWFSVERSION IpWFSVersion;
} WFSVRSNERROR, * LPWFSVRSNERROR;

/****** Error COdES *kk *k%k *kkkkk *% * * *kk *kk *kkkkk x/

#define WFS_SUCCESS (0)
#define WFS_ERR_ALREADY_STARTED 1)

Page 116
CWA 13449-1:1998

#define WFS_ERR_AP|_VER_TOO_HIGH
#define WFS_ERR_API_VER_TOO_LOW
#define WFS_ERR_CANCELED

#define WFS_ERR_CFG_INVALID_HKEY
#define WFS_ERR_CFG_INVALID_NAME
#define WFS_ERR_CFG_INVALID_SUBKEY
#define WFS_ERR_CFG_INVALID_VALUE
#define WFS_ERR_CFG_KEY_NOT_EMPTY
#define WFS_ERR_CFG_NAME_TOO_LONG
#define WFS_ERR_CFG_NO_MORE_[TEMS
#define WFS_ERR_CFG_VALUE_TOO_LONG
#define WFS_ERR_DEV_NOT_READY
#define WFS_ERR_HARDWARE_ERROR
#define WFS_ERR_INTERNAL_ERROR
#define WFS_ERR_INVALID_ADDRESS
#define WFS_ERR_INVALID_APP_HANDLE
#define WFS_ERR_INVALID_BUFFER
#define WFS_ERR_INVALID_CATEGORY
#define WFS_ERR_INVALID_COMMAND
#define WFS_ERR_INVALID_EVENT_CLASS
#define WFS_ERR_INVALID_HSERVICE
#define WFS_ERR_INVALID_HPROVIDER
#define WFS_ERR_INVALID_HWND

#define WFS_ERR_INVALID_HWNDREG
#define WFS_ERR_INVALID_POINTER
#define WFS_ERR_INVALID_REQ_ID
#define WFS_ERR_INVALID_RESULT
#define WFS_ERR_INVALID_SERVPROV
#define WFS_ERR_INVALID_TIMER

#define WFS_ERR_INVALID_TRACELEVEL
#define WFS_ERR_LOCKED

#define WFS_ERR_NO_BLOCKING_CALL
#define WFS_ERR_NO_SERVPROV

#define WFS_ERR_NO_SUCH_THREAD
#define WFS_ERR_NO_TIMER

#define WFS_ERR_NOT_LOCKED

#define WFS_ERR_NOT_OK_TO_UNLOAD
#define WFS_ERR_NOT_STARTED

#define WFS_ERR_NOT_REGISTERED
#define WFS_ERR_OP_IN_PROGRESS
#define WFS_ERR_OUT_OF _MEMORY
#define WFS_ERR_SERVICE_NOT_FOUND
#define WFS_ERR_SPI_VER_TOO_LOW
#define WFS_ERR_SRVC_VER_TOO_HIGH
#define WFS_ERR_SRVC_VER_TOO_LOW
#define WFS_ERR_TIMEOUT

#define WFS_ERR_UNSUPP_CATEGORY
#define WFS_ERR_UNSUPP_COMMAND
#define WFS_ERR_VERSION_ERROR_IN_SRVC
#define WFS_ERR_INVALID_DATA

#define WFS_ERR_SOFTWARE_ERROR
#define WFS_ERR_CONNECTION_LOST

#define WFS_INDEFINITE_WAIT

[riiix Messages *rrkkkkckiiiiicktoiokokoiioiototokokdokiok
/* Message-No = (WM_USER + No) */

#define WFS_OPEN_COMPLETE

#define WFS_CLOSE_COMPLETE
#define WFS_LOCK_COMPLETE

#define WFS_UNLOCK_COMPLETE
#define WFS_REGISTER_COMPLETE
#define WFS_DEREGISTER_COMPLETE
#define WFS_GETINFO_COMPLETE
#define WFS_EXECUTE_COMPLETE

#define WFS_EXECUTE_EVENT
#define WFS_SERVICE_EVENT
#define WFS_USER_EVENT
#define WFS_SYSTEM_EVENT

#define WFS_TIMER_EVENT

(WM_USER + 1)
(WM_USER + 2)
(WM_USER + 3)
(WM_USER + 4)
(WM _USER + 5)
(WM_USER + 6)
(WM _USER + 7)
(WM_USER + 8)

(WM_USER + 20)
(WM_USER + 21)
(WM_USER + 22)
(WM_USER + 23)

(WM_USER + 100)

Page 117
CWA 13449-1:1998

[erwer Eyent ClaSSES * sttt ik kA kAR IRAI AR A IR RH IR HIHHK |

#define SERVICE_EVENTS (2)

#define USER_EVENTS)

#define SYSTEM_EVENTS (4)

#define EXECUTE_EVENTS (8)

[FrEREE System EVENT DS FF stttk AR AIRAIHANK |

#define WFS_SYSE_UNDELIVERABLE_MSG Q)
#define WFS_SYSE_HARDWARE_ERROR 2)
#define WFS_SYSE_VERSION_ERROR 3)
#define WFS_SYSE_DEVICE_STATUS (4)

#define WFS_SYSE_APP_DISCONNECT (5)

[k XES Trace LEVe| F stttk kAR A A AN |

#define WFS_TRACE_API 0x00000001
#define WFS_TRACE_ALL_API 0x00000002
#define WFS_TRACE_SPI 0x00000004
#define WFS_TRACE_ALL_SPI 0x00000008
#define WFS_TRACE_MGR 0x00000010
[Frwr AP| fUNCHIONS * oot ik Ak A SRR AR AR AR AHASHK |

HRESULT extern WINAPI WFSCancelAsyncRequest (HSERVICE hService, REQUESTID
RequestID);

HRESULT extern WINAPI WFSCancelBlockingCall (DWORD dwThreadID);
HRESULT extern WINAPI WFSCleanUp ();
HRESULT extern WINAPI WFSClose (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncClose (HSERVICE hService, HWND hwWnd, LPREQUESTID
IpRequestID);

HRESULT extern WINAPI WFSCreateAppHandle (LPHAPP IphApp);

HRESULT extern WINAPI WFSDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncDeregister (HSERVICE hService, DWORD dwEventClass,
HWND hWwndReg, HWND hWnd, LPREQUESTID IpRequestID);

HRESULT extern WINAPI WFSDestroyAppHandle (HAPP hApp);

HRESULT extern WINAPI WFSExecute (HSERVICE hService, DWORD dwCommand, LPVOID
IpCmdData, DWORD dwTimeOut, LPWFSRESULT * IppResult);

HRESULT extern WINAPI WFSAsyncExecute (HSERVICE hService, DWORD dwCommand, LPVOID
IpCmdData, DWORD dwTimeOut, HWND hWnd, LPREQUESTID IpRequestID);

HRESULT extern WINAPI WFSFreeResult (LPWFSRESULT IpResult);

HRESULT extern WINAPI WFSGetinfo (HSERVICE hService, DIWORD dwCategory, LPVOID
IpQueryDetails, DWORD dwTimeOut, LPWFSRESULT * IppResult);

HRESULT extern WINAPI WFSAsyncGetinfo (HSERVICE hService, DWORD dwCategory, LPVOID
IpQueryDetails, DWORD dwTimeOut, HWND hwWnd, LPREQUESTID IpRequestID);

BOOL extern WINAPI WFSIsBlocking ();

HRESULT extern WINAPI WFSLock (HSERVICE hService, DIWVORD dwTimeOut , LPWFSRESULT *
IppResult);

HRESULT extern WINAPI WFSAsyncLock (HSERVICE hService, DWORD dwTimeOut, HWND hWnd,
LPREQUESTID IpRequestID);

HRESULT extern WINAPI WFSOpen (LPSTR IpszLogicalName, HAPP hApp, LPSTR IpszAppID,
DWORD dwTraceLevel, DIWORD dwTimeOut, DWORD dwSrvcVersionsRequired, LPWFSVERSION
IpSrvcVersion, LPWFSVERSION IpSPIVersion, LPHSERVICE IphService);

Page 118
CWA 13449-1:1998

HRESULT extern WINAPI WFSAsyncOpen (LPSTR IpszLogicalName, HAPP hApp, LPSTR
IpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, LPHSERVICE IphService, HWND hWnd,
DWORD dwsSrvcVersionsRequired, LPWFSVERSION IpSrvcVersion, LPWFSVERSION
IpSPIVersion, LPREQUESTID IpRequestID);

HRESULT extern WINAPI WFSRegister (HSERVICE hService, DWORD dwEventClass, HWND
hWndReg);

HRESULT extern WINAPI WFSAsyncRegister (HSERVICE hService, DWORD dwEventClass,
HWND hWwndReg, HWND hWnd, LPREQUESTID IpRequestID);

HRESULT extern WINAPI WFSSetBlockingHook (XFSBLOCKINGHOOK IpBlockFunc,
LPXFSBLOCKINGHOOK IppPrevFunc);

HRESULT extern WINAPI WFSStartUp (DWORD dwVersionsRequired, LPWFSVERSION
IpWFSVersion);

HRESULT extern WINAPI WFSUnhookBlockingHook ();
HRESULT extern WINAPI WFSUnlock (HSERVICE hService);

HRESULT extern WINAPI WFSAsyncUnlock (HSERVICE hService, HWND hWnd, LPREQUESTID
IpRequestID);

HRESULT extern WINAPI WFMSetTracelLevel (HSERVICE hService, DIWORD dwTracelLevel);
/* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} [*extern "C"*/

#endif

#endif /*__inc_xfsapi__h*/

C.2 XFSADMIN.H

JRFFIRK KIS T K KKKk *% *% *hkkhkkkhkkhhkkkhrk *% * *kkkkkkkkkkkkk *

* xfsadmin.h XFS-Administration and Support functions *
*

Version 2.00 -- 11/11/96 *

*
*
*

*hkkkkkkhkk *% * *kkkhkkkkkkkkk *% *% * *kkkkkkkhkkkkk xx/

#ifndef __INC_XFSADMIN__H
#define _ INC_XFSADMIN_H

#ifdef __cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of ulFlags used for WFMAllocateBuffer */

#define WFS_MEM_SHARE 0x00000001
#define WFS_MEM_ZEROINIT 0x00000002
[rAFRRx Support Functions **xkkkkibkkokotk TR AR R R RN R RN RNNRRNRRRANIT /

HRESULT extern WINAPI WFMAllocateBuffer(ULONG ulSize, ULONG ulFlags, LPVOID *
IppvData);

HRESULT extern WINAPI WFMAIllocateMore(ULONG ulSize, LPVOID IpvOriginal, LPVOID *
IppvData);

HRESULT extern WINAPI WFMFreeBuffer(LPVOID IpvData);

Page 119
CWA 13449-1:1998

HRESULT extern WINAPI WFMGetTraceLevel (HSERVICE hService, LPDWORD
IpdwTracelLevel);

HRESULT extern WINAPI WFEMKIillITimer(WORD wTimerID);

HRESULT extern WINAPI WFMOutputTraceData (LPSTR IpszData);

HRESULT extern WINAPI WFMReleaseDLL (HPROVIDER hProvider);

HRESULT extern WINAPI WFMSetTimer (HWND hwWnd, LPVOID IpContext, DWORD dwTimeVal,
LPWORD IpwTimerlD);

[* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} [*extern "C"*/

#endif

#endif /*__INC_XFSADMIN__H */
C.3 XFSCONF.H

JRFFIRK I I ST KKK KK *% *% *kkkkkkkhkkhhkkkhkk *% * *kkkhkkkhkkkkk *

* *

* xfsconf.n XFS - definitions for the Configuration functions *

* *
Version 2.00 -- 11/11/96 *

*
* *
*

*hkkkkkkhkk *% * *kkkhkkkhkkkkk *% *% * *kkkkkkkhkkkkk xx/

#ifndef __INC_XFSCONF_H
#define _INC_XFSCONF_H

#ifdef __cplusplus
extern "C" {
#endif

/******* Common *% *% * * *k%k *k%k * *% *% * * *kk *k%k x/
#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

// following HKEY and PHKEY are already defined in WINREG.H
I so definition has been removed

// typedef HANDLE HKEY;

// typedef HANDLE * PHKEY;

[rxxxxrk \[glue Of hKey **rxsrrriisiiiiiiiodiiooiikkikk kR xxx |
#define WFS_CFG_HKEY_XFS ROOT ((HKEY)1)
[k \Jalues of |pdwDisSposition **rirttkkkkkkkikttiikikkkkkkktbkikokkkokok |
#define WFS_CFG_CREATED_NEW_KEY)
#define WFS_CFG_OPENED_EXISTING_KEY)

[reeeek Configuration Functions *rxskkkkkkkkikttbiikikokokookboiokokokkooooek |

HRESULT extern WINAPI WFMCloseKey (HKEY hKey);

HRESULT extern WINAPI WFMCreateKey (HKEY hKey, LPSTR IpszSubKey, PHKEY
phkResult, LPDWORD IpdwDisposition);

HRESULT extern WINAPI WFMDeleteKey (HKEY hKey, LPSTR IpszSubKey);
HRESULT extern WINAPI WFMDeleteValue (HKEY hKey, LPSTR IpszValue);

HRESULT extern WINAPI WFMEnumKey (HKEY hKey, DWORD iSubKey, LPSTR IpszName,
LPDWORD IpcchName, PFILETIME IpftLastWrite);

HRESULT extern WINAPI WFMEnumValue (HKEY hKey, DWORD iValue, LPSTR IpszValue,
LPDWORD IpcchValue, LPSTR IpszData, LPDWORD IpcchData);

Page 120
CWA 13449-1:1998

HRESULT extern WINAPI WFMOpenKey (HKEY hKey, LPSTR IpszSubKey, PHKEY phkResult);

HRESULT extern WINAPI WFMQueryValue (HKEY hKey, LPSTR IpszValueName, LPSTR
IpszData, LPDWORD IpcchData);

HRESULT extern WINAPI WFMSetValue (HKEY hKey, LPSTR IpszValueName, LPSTR
IpszData, DWORD cchData);

[* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus
} [*extern "C"*/

#endif
#endif /* __INC_XFSCONF__H */
C.4 XFSSPIH
*
* xfsspi.h XFS - SPI functions, types, and definitions *
*
Version 2.00 -- 11/11/96 *

*
*
*

Fkkkkk *% *% * *kkkhkkkhkkkkk *% *% * *kkkhkkkhkkkkk xx/

#ifndef __inc_xfsspi__h
#define __inc_xfsspi__h

#ifdef __cplusplus
extern "C" {

#endif

#include <xfsapi.h>

typedef HANDLE HPROVIDER,;

#include <xfsconf.h>
#include <xfsadmin.h>

/* be aware of alignment */
#pragma pack(push,1)

/****** SPI functlons *kkkkk *% *% *kkkkk *kk *kkkkk *% *% *kkk /

HRESULT extern WINAPI WFPCancelAsyncRequest (HSERVICE hService, REQUESTID
RequestID);

HRESULT extern WINAPI WFPClose (HSERVICE hService, HWND hwWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPDeregister (HSERVICE hService, DWORD dwEventClass, HWND
hwndReg, HWND hwnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPExecute (HSERVICE hService, DWORD dwCommand, LPVOID
IpCmdData, DWORD dwTimeOut, HWND hWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPGetinfo (HSERVICE hService, DIWORD dwCategory, LPVOID
IpQueryDetails, DWORD dwTimeOut, HWND hwWnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPLock (HSERVICE hService, DWORD dwTimeOut, HWND hwnd,
REQUESTID ReqID);

HRESULT extern WINAPI WFPOpen (HSERVICE hService, LPSTR IpszLogicalName, HAPP

hApp, LPSTR IpszAppID, DWORD dwTraceLevel, DWORD dwTimeOut, HWND hwnd, REQUESTID
ReqlID, HPROVIDER hProvider, DWORD dwSPIVersionsRequired, LPWFSVERSION IpSPIVersion,
DWORD dwSrvcVersionsRequired, LPWFSVERSION IpSrvcVersion);

HRESULT extern WINAPI WFPRegister (HSERVICE hService, DWORD dwEventClass, HWND
hwndReg, HWND hwnd, REQUESTID ReqID);

HRESULT extern WINAPI WFPSetTraceLevel (HSERVICE hService, DWORD dwTraceLevel);

Page 121
CWA 13449-1:1998

HRESULT extern WINAPI WFPUnloadService ();
HRESULT extern WINAPI WFPUnlock (HSERVICE hService, HWND hwnd, REQUESTID);

[* restore alignment */
#pragma pack(pop)
#ifdef __cplusplus

} [*extern "C"*/
#endif

#endif /* __inc_xfsspi__h*/

